blob: f8d4ba1d756bce0602d9339acd48f1a8f9e3847c [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["QS8", "QU8"]
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 3
$assert REQUANTIZATION == "FP32"
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <smmintrin.h>
#include <xnnpack/gavgpool.h>
#include <xnnpack/unaligned.h>
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
$_MM_CVTEPX8_EPI16 = {"QS8": "_mm_cvtepi8_epi16", "QU8": "_mm_cvtepu8_epi16"}[DATATYPE]
$_MM_CVTEPX16_EPI32 = {"QS8": "_mm_cvtepi16_epi32", "QU8": "_mm_cvtepu16_epi32"}[DATATYPE]
$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE]
$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE]
void xnn_${DATATYPE.lower()}_gavgpool_minmax_fp32_ukernel_${ROW_TILE}x__sse41_c${CHANNEL_TILE}(
size_t rows,
size_t channels,
const ${XINT8_T}* input,
size_t input_stride,
const ${XINT8_T}* zero,
${XINT8_T}* output,
const union xnn_${DATATYPE.lower()}_avgpool_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows != 0);
assert(rows <= ${ROW_TILE});
assert(channels != 0);
const ${XINT8_T}* i0 = input;
$for M in range(1, ROW_TILE):
const ${XINT8_T}* i${M} = (const ${XINT8_T}*) ((uintptr_t) i${M-1} + input_stride);
$if M % 2 == 1:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = zero;
}
$else:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = zero;
}
const __m128i vinit_bias = _mm_load_si128((const __m128i*) params->fp32_sse4.init_bias);
const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->fp32_sse4.output_min);
for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) {
$for M in range(2):
const __m128i vxi${M}x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (i${M} + ${C})));
i${M} += ${CHANNEL_TILE};
__m128i vacc${ABC[0:8]} = _mm_add_epi16(vxi0x${ABC[0:8]}, vxi1x${ABC[0:8]});
const __m128i vxi2x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i2));
$for C in range(8, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+8]} = _mm_add_epi16(vxi0x${ABC[C:C+8]}, vxi1x${ABC[C:C+8]});
const __m128i vxi2x${ABC[C:C+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (i2 + ${C})));
i2 += ${CHANNEL_TILE};
$for M in range(3, ROW_TILE):
vacc${ABC[0:8]} = _mm_add_epi16(vacc${ABC[0:8]}, vxi${M-1}x${ABC[0:8]});
const __m128i vxi${M}x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm_add_epi16(vacc${ABC[C:C+8]}, vxi${M-1}x${ABC[C:C+8]});
const __m128i vxi${M}x${ABC[C:C+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (i${M} + ${C})));
i${M} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm_add_epi16(vacc${ABC[C:C+8]}, vxi${ROW_TILE-1}x${ABC[C:C+8]});
$if DATATYPE == "QU8":
const __m128i vzero = _mm_setzero_si128();
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+4]} = ${_MM_CVTEPX16_EPI32}(vacc${ABC[C:C+8]});
$if DATATYPE == "QS8":
__m128i vacc${ABC[C+4:C+8]} = _mm_srai_epi32(_mm_unpackhi_epi16(vacc${ABC[C:C+8]}, vacc${ABC[C:C+8]}), 16);
$else:
__m128i vacc${ABC[C+4:C+8]} = _mm_unpackhi_epi16(vacc${ABC[C:C+8]}, vzero);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, vinit_bias);
$for C in range(0, CHANNEL_TILE, 4):
__m128 vfpacc${ABC[C:C+4]} = _mm_cvtepi32_ps(vacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = _mm_mul_ps(vfpacc${ABC[C:C+4]}, vscale);
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = _mm_min_ps(vfpacc${ABC[C:C+4]}, voutput_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = _mm_cvtps_epi32(vfpacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 8):
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = ${_MM_PACKXS_EPI16}(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]});
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min);
$else:
vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min);
$if CHANNEL_TILE > 8:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(channels != 0) {
${"do " if CHANNEL_TILE > 8 else ""}{
$for M in range(2):
const __m128i vxi${M}x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i${M}));
i${M} += 8;
__m128i vacc${ABC[0:8]} = _mm_add_epi16(vxi0x${ABC[0:8]}, vxi1x${ABC[0:8]});
const __m128i vxi2x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i2));
i2 += 8;
$for M in range(3, ROW_TILE):
vacc${ABC[0:8]} = _mm_add_epi16(vacc${ABC[0:8]}, vxi${M-1}x${ABC[0:8]});
const __m128i vxi${M}x${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) i${M}));
i${M} += 8;
vacc${ABC[0:8]} = _mm_add_epi16(vacc${ABC[0:8]}, vxi${ROW_TILE-1}x${ABC[0:8]});
__m128i vacc${ABC[0:4]} = ${_MM_CVTEPX16_EPI32}(vacc${ABC[0:8]});
$if DATATYPE == "QS8":
__m128i vacc${ABC[4:8]} = _mm_srai_epi32(_mm_unpackhi_epi16(vacc${ABC[0:8]}, vacc${ABC[0:8]}), 16);
$else:
__m128i vacc${ABC[4:8]} = _mm_unpackhi_epi16(vacc${ABC[0:8]}, _mm_setzero_si128());
vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, vinit_bias);
vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, vinit_bias);
__m128 vfpacc${ABC[0:4]} = _mm_cvtepi32_ps(vacc${ABC[0:4]});
__m128 vfpacc${ABC[4:8]} = _mm_cvtepi32_ps(vacc${ABC[4:8]});
vfpacc${ABC[0:4]} = _mm_mul_ps(vfpacc${ABC[0:4]}, vscale);
vfpacc${ABC[4:8]} = _mm_mul_ps(vfpacc${ABC[4:8]}, vscale);
vfpacc${ABC[0:4]} = _mm_min_ps(vfpacc${ABC[0:4]}, voutput_max_less_zero_point);
vfpacc${ABC[4:8]} = _mm_min_ps(vfpacc${ABC[4:8]}, voutput_max_less_zero_point);
vacc${ABC[0:4]} = _mm_cvtps_epi32(vfpacc${ABC[0:4]});
vacc${ABC[4:8]} = _mm_cvtps_epi32(vfpacc${ABC[4:8]});
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point);
__m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min);
$if CHANNEL_TILE > 8:
if XNN_LIKELY(channels >= 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
channels -= 8;
} else {
if (channels & 4) {
unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (channels & 2) {
unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (channels & 1) {
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
output += 1;
}
channels = 0;
}
$else:
if (channels & 4) {
unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (channels & 2) {
unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (channels & 1) {
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
}
}${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
}
}