| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stddef.h> |
| |
| #include <xnnpack/math.h> |
| #include <xnnpack/requantization-stubs.h> |
| |
| |
| void xnn_qs8_requantize_rndna__scalar_unsigned64( |
| size_t n, |
| const int32_t* input, |
| float scale, |
| int8_t zero_point, |
| int8_t qmin, |
| int8_t qmax, |
| int8_t* output) |
| { |
| assert(n % 4 == 0); |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| const uint32_t scale_bits = float_as_uint32(scale); |
| const uint32_t multiplier = (scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000); |
| const uint32_t shift = 127 + 23 - (scale_bits >> 23); |
| assert(shift >= 24); |
| assert(shift < 56); |
| |
| const uint64_t rounding = UINT64_C(1) << (shift - 1); |
| const int32_t smin = (int32_t) qmin - (int32_t) zero_point; |
| const int32_t smax = (int32_t) qmax - (int32_t) zero_point; |
| for (; n != 0; n -= 4) { |
| const int32_t x = input[0]; |
| const int32_t y = input[1]; |
| const int32_t z = input[2]; |
| const int32_t w = input[3]; |
| input += 4; |
| |
| // Compute absolute value of input as unsigned 32-bit int. |
| // All further computations will work with unsigned values to avoid undefined behaviour on signed operations. |
| const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x; |
| const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y; |
| const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z; |
| const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w; |
| |
| // Compute full 64-bit product of 32-bit factors. |
| const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier; |
| const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier; |
| const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier; |
| const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier; |
| |
| // Shift the full 64-bit product right with rounding. |
| // Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero). |
| // |
| // Note that although rounding is precomputed, it is dependent on shift value, and on processors with 64-bit |
| // "right shift with rounding" instruction each line below can be represented by just one such instruction |
| // (e.g. VRSHL.U64 on ARM NEON, URSHL in ARM64 Advanced SIMD). |
| const uint32_t x_abs_scaled = (uint32_t) ((x_product + rounding) >> shift); |
| const uint32_t y_abs_scaled = (uint32_t) ((y_product + rounding) >> shift); |
| const uint32_t z_abs_scaled = (uint32_t) ((z_product + rounding) >> shift); |
| const uint32_t w_abs_scaled = (uint32_t) ((w_product + rounding) >> shift); |
| |
| // Copy the sign of input to scaled absolute input value. |
| // |
| // On x86 processors with SSSE3 instruction set, this operation nicely maps to PSIGND instruction. |
| const int32_t x_scaled = (int32_t) (x >= 0 ? x_abs_scaled : -x_abs_scaled); |
| const int32_t y_scaled = (int32_t) (y >= 0 ? y_abs_scaled : -y_abs_scaled); |
| const int32_t z_scaled = (int32_t) (z >= 0 ? z_abs_scaled : -z_abs_scaled); |
| const int32_t w_scaled = (int32_t) (w >= 0 ? w_abs_scaled : -w_abs_scaled); |
| |
| // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point). |
| const int32_t x_clamped = math_min_s32(math_max_s32(x_scaled, smin), smax); |
| const int32_t y_clamped = math_min_s32(math_max_s32(y_scaled, smin), smax); |
| const int32_t z_clamped = math_min_s32(math_max_s32(z_scaled, smin), smax); |
| const int32_t w_clamped = math_min_s32(math_max_s32(w_scaled, smin), smax); |
| |
| // Add zero point to clamped value. |
| // The result is guaranteed to be in [qmin, qmax] range. |
| // |
| // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519] |
| // range, so addition of zero point (which can be up to 127) can overflow signed 32-bit integer. |
| const int32_t x_biased = x_clamped + zero_point; |
| const int32_t y_biased = y_clamped + zero_point; |
| const int32_t z_biased = z_clamped + zero_point; |
| const int32_t w_biased = w_clamped + zero_point; |
| |
| output[0] = (int8_t) x_biased; |
| output[1] = (int8_t) y_biased; |
| output[2] = (int8_t) z_biased; |
| output[3] = (int8_t) w_biased; |
| output += 4; |
| } |
| } |