blob: 746417e3a7e4985fec380ff6835c447f5ff143a7 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["QS8", "QU8"]
$assert BATCH_TILE % 4 == 0
$SIMD_TILE = BATCH_TILE // 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_acle.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
#include <xnnpack/unaligned.h>
#include <xnnpack/vcvt.h>
$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
$XINT8X4_T = {"QS8": "int8x4_t", "QU8": "uint8x4_t"}[DATATYPE]
$XINT16X2_T = {"QS8": "int16x2_t", "QU8": "uint16x2_t"}[DATATYPE]
$__XXTAB16 = {"QS8": "__sxtab16", "QU8": "__uxtab16"}[DATATYPE]
$__XSAT = {"QS8": "__ssat", "QU8": "__usat"}[DATATYPE]
void xnn_${DATATYPE.lower()}_vcvt_ukernel__armsimd32_x${BATCH_TILE}(
size_t n,
const ${XINT8_T}* x,
${XINT8_T}* y,
const union xnn_${DATATYPE.lower()}_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
const ${XINT16X2_T} vminus_input_zero_point = (${XINT16X2_T}) params->armsimd32.minus_input_zero_point;
const int32_t vbias = params->armsimd32.bias;
const int32_t vmultiplier = params->armsimd32.multiplier;
$if BATCH_TILE > 4:
for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) {
$for N in range(SIMD_TILE):
const ${XINT8X4_T} vx${ABC[4*N:4*N+4]} = (${XINT8X4_T}) unaligned_indexed_load_u32(x, ${N});
x += ${BATCH_TILE};
$for N in range(0, BATCH_TILE, 4):
const ${XINT16X2_T} vx${ABC[N]}${ABC[N+2]} = ${__XXTAB16}(vminus_input_zero_point, vx${ABC[N:N+4]});
const ${XINT16X2_T} vx${ABC[N+1]}${ABC[N+3]} = ${__XXTAB16}(vminus_input_zero_point, __ror(vx${ABC[N:N+4]}, 8));
$for N in range(0, BATCH_TILE, 4):
int32_t vacc${ABC[N]} = __smlawb(vmultiplier, vx${ABC[N]}${ABC[N+2]}, vbias);
int32_t vacc${ABC[N+1]} = __smlawb(vmultiplier, vx${ABC[N+1]}${ABC[N+3]}, vbias);
int32_t vacc${ABC[N+2]} = __smlawt(vmultiplier, vx${ABC[N]}${ABC[N+2]}, vbias);
int32_t vacc${ABC[N+3]} = __smlawt(vmultiplier, vx${ABC[N+1]}${ABC[N+3]}, vbias);
$for N in range(BATCH_TILE):
vacc${ABC[N]} = ${__XSAT}(math_asr_s32(vacc${ABC[N]}, 1), 8);
$for N in range(BATCH_TILE):
y[${N}] = (${XINT8_T}) vacc${ABC[N]};
y += ${BATCH_TILE};
}
for (; n >= 4 * sizeof(${XINT8_T}); n -= 4 * sizeof(${XINT8_T})) {
const ${XINT8X4_T} vx0123 = (${XINT8X4_T}) unaligned_load_u32(x);
x += 4;
const ${XINT16X2_T} vx02 = ${__XXTAB16}(vminus_input_zero_point, vx0123);
const ${XINT16X2_T} vx13 = ${__XXTAB16}(vminus_input_zero_point, __ror(vx0123, 8));
int32_t vacc0 = __smlawb(vmultiplier, vx02, vbias);
int32_t vacc1 = __smlawb(vmultiplier, vx13, vbias);
int32_t vacc2 = __smlawt(vmultiplier, vx02, vbias);
int32_t vacc3 = __smlawt(vmultiplier, vx13, vbias);
vacc0 = ${__XSAT}(math_asr_s32(vacc0, 1), 8);
vacc1 = ${__XSAT}(math_asr_s32(vacc1, 1), 8);
vacc2 = ${__XSAT}(math_asr_s32(vacc2, 1), 8);
vacc3 = ${__XSAT}(math_asr_s32(vacc3, 1), 8);
y[0] = (${XINT8_T}) vacc0;
y[1] = (${XINT8_T}) vacc1;
y[2] = (${XINT8_T}) vacc2;
y[3] = (${XINT8_T}) vacc3;
y += 4;
}
if XNN_UNLIKELY(n != 0) {
const ${XINT8X4_T} vx0123 = (${XINT8X4_T}) unaligned_load_u32(x);
const ${XINT16X2_T} vx02 = ${__XXTAB16}(vminus_input_zero_point, vx0123);
const ${XINT16X2_T} vx13 = ${__XXTAB16}(vminus_input_zero_point, __ror(vx0123, 8));
int32_t vacc0 = __smlawb(vmultiplier, vx02, vbias);
int32_t vacc1 = __smlawb(vmultiplier, vx13, vbias);
const int32_t vacc2 = __smlawt(vmultiplier, vx02, vbias);
vacc0 = ${__XSAT}(math_asr_s32(vacc0, 1), 8);
vacc1 = ${__XSAT}(math_asr_s32(vacc1, 1), 8);
if (n & (2 * sizeof(${XINT8_T}))) {
y[0] = (${XINT8_T}) vacc0;
y[1] = (${XINT8_T}) vacc1;
vacc0 = ${__XSAT}(math_asr_s32(vacc2, 1), 8);
y += 2;
}
if (n & (1 * sizeof(${XINT8_T}))) {
y[0] = (${XINT8_T}) vacc0;
}
}
}