blob: 47d10ee0e4299361fae628d41eeeba30fc28b4ca [file] [log] [blame] [edit]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["QS8", "QU8"]
$assert REQUANTIZATION == "FP32"
$assert SSE in [2, 4]
$assert not AVX or SSE == 4
$SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE]
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <${SSE_HEADER}>
#include <xnnpack/unaligned.h>
#include <xnnpack/vmul.h>
$PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("sse4" if SSE == 4 and DATATYPE == "QS8" else "sse2")
$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
$_MM_CVTEPX8_EPI16 = {"QS8": "_mm_cvtepi8_epi16", "QU8": "_mm_cvtepu8_epi16"}[DATATYPE]
$_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE]
$_MM_MIN_EPX8 = {"QS8": "_mm_min_epi8", "QU8": "_mm_min_epu8"}[DATATYPE]
$_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE]
$ISA = "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE]
void xnn_${DATATYPE.lower()}_vmulc_minmax_${REQUANTIZATION.lower()}_ukernel__${ISA}_mul16_ld64_x${BATCH_TILE}(
size_t n,
const ${XINT8_T}* input_a,
const ${XINT8_T}* input_b,
${XINT8_T}* output,
const union xnn_${DATATYPE.lower()}_mul_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
const __m128i va_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.a_zero_point);
const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max);
__m128i vxb = _mm_sub_epi16(
_mm_shuffle_epi32(_mm_cvtsi32_si128(UINT32_C(0x00010001) * (uint32_t) (uint16_t) (int16_t) *input_b), 0),
_mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.b_zero_point));
for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) {
$if SSE == 4:
const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a));
$for N in range(8, BATCH_TILE, 8):
const __m128i va${ABC[N:N+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (input_a + ${N})));
$else:
__m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a);
$for N in range(8, BATCH_TILE, 8):
__m128i va${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i*) (input_a + ${N}));
input_a += ${BATCH_TILE};
$if SSE < 4:
$if DATATYPE == "QU8":
const __m128i vzero = _mm_setzero_si128();
$for N in range(0, BATCH_TILE, 8):
va${ABC[N:N+8]} = _mm_unpacklo_epi8(va${ABC[N:N+8]}, vzero);
$else:
$for N in range(0, BATCH_TILE, 8):
va${ABC[N:N+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[N:N+8]}, va${ABC[N:N+8]}), 8);
$for N in range(0, BATCH_TILE, 8):
const __m128i vxa${ABC[N:N+8]} = _mm_sub_epi16(va${ABC[N:N+8]}, va_zero_point);
$for N in range(0, BATCH_TILE, 8):
const __m128i vprod${ABC[N:N+8]}lo = _mm_mullo_epi16(vxa${ABC[N:N+8]}, vxb);
const __m128i vprod${ABC[N:N+8]}hi = _mm_mulhi_epi16(vxa${ABC[N:N+8]}, vxb);
$for N in range(0, BATCH_TILE, 8):
const __m128i vprod${ABC[N:N+4]} = _mm_unpacklo_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi);
const __m128i vprod${ABC[N+4:N+8]} = _mm_unpackhi_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi);
$for N in range(0, BATCH_TILE, 4):
__m128 vfpacc${ABC[N:N+4]} = _mm_cvtepi32_ps(vprod${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vfpacc${ABC[N:N+4]} = _mm_mul_ps(vfpacc${ABC[N:N+4]}, vscale);
$for N in range(0, BATCH_TILE, 4):
const __m128i vacc${ABC[N:N+4]} = _mm_cvtps_epi32(vfpacc${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 8):
__m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point);
$if DATATYPE == "QS8" and SSE < 4:
$for N in range(0, BATCH_TILE, 8):
vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min);
$for N in range(0, BATCH_TILE, 8):
vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max);
$for N in range(0, BATCH_TILE, 16):
$if N + 8 < BATCH_TILE:
__m128i vout${ABC[N:N+16]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]});
$else:
__m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]});
$if DATATYPE == "QU8" or SSE == 4:
$for N in range(0, BATCH_TILE, 16):
$if N + 8 < BATCH_TILE:
vout${ABC[N:N+16]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+16]}, voutput_min);
$else:
vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_min);
$for N in range(0, BATCH_TILE, 16):
$if N + 8 < BATCH_TILE:
vout${ABC[N:N+16]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+16]}, voutput_max);
$else:
vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max);
$if BATCH_TILE >= 16:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
$for N in range(16, BATCH_TILE, 16):
$if N + 8 < BATCH_TILE:
_mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]});
output += ${BATCH_TILE};
}
if XNN_UNLIKELY(n != 0) {
${"do " if BATCH_TILE > 8 else ""}{
$if SSE == 4:
const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a));
$else:
__m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a);
$if BATCH_TILE > 8:
input_a += 8;
$if SSE < 4:
$if DATATYPE == "QU8":
const __m128i vzero = _mm_setzero_si128();
va${ABC[0:8]} = _mm_unpacklo_epi8(va${ABC[0:8]}, vzero);
$else:
va${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[0:8]}, va${ABC[0:8]}), 8);
const __m128i vxa${ABC[0:8]} = _mm_sub_epi16(va${ABC[0:8]}, va_zero_point);
const __m128i vprod${ABC[0:8]}lo = _mm_mullo_epi16(vxa${ABC[0:8]}, vxb);
const __m128i vprod${ABC[0:8]}hi = _mm_mulhi_epi16(vxa${ABC[0:8]}, vxb);
const __m128i vprod${ABC[0:4]} = _mm_unpacklo_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi);
const __m128i vprod${ABC[4:8]} = _mm_unpackhi_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi);
__m128 vfpacc${ABC[0:4]} = _mm_cvtepi32_ps(vprod${ABC[0:4]});
__m128 vfpacc${ABC[4:8]} = _mm_cvtepi32_ps(vprod${ABC[4:8]});
vfpacc${ABC[0:4]} = _mm_mul_ps(vfpacc${ABC[0:4]}, vscale);
vfpacc${ABC[4:8]} = _mm_mul_ps(vfpacc${ABC[4:8]}, vscale);
const __m128i vacc${ABC[0:4]} = _mm_cvtps_epi32(vfpacc${ABC[0:4]});
const __m128i vacc${ABC[4:8]} = _mm_cvtps_epi32(vfpacc${ABC[4:8]});
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point);
$if DATATYPE == "QS8" and SSE < 4:
vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min);
vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max);
__m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]});
$if DATATYPE == "QU8" or SSE == 4:
vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min);
vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max);
$if BATCH_TILE > 8:
if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
n -= 8 * sizeof(${XINT8_T});
} else {
if (n & (4 * sizeof(${XINT8_T}))) {
unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (n & (2 * sizeof(${XINT8_T}))) {
$if SSE == 4:
unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
$else:
unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (n & (1 * sizeof(${XINT8_T}))) {
$if SSE == 4:
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
}
n = 0;
}
$else:
if (n & (4 * sizeof(${XINT8_T}))) {
unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (n & (2 * sizeof(${XINT8_T}))) {
$if SSE == 4:
unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0));
$else:
unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}));
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (n & (1 * sizeof(${XINT8_T}))) {
$if SSE == 4:
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
}
}${" while (n != 0);" if BATCH_TILE > 8 else ""}
}
}