| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert DATATYPE in ["QS8", "QU8"] |
| $assert REQUANTIZATION == "FP32" |
| $assert SSE in [2, 4] |
| $assert not AVX or SSE == 4 |
| $SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE] |
| $assert BATCH_TILE % 8 == 0 |
| $assert BATCH_TILE >= 8 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| #include <${SSE_HEADER}> |
| |
| #include <xnnpack/unaligned.h> |
| #include <xnnpack/vmul.h> |
| |
| |
| $PARAMS_STRUCT = REQUANTIZATION.lower() + "_" + ("sse4" if SSE == 4 and DATATYPE == "QS8" else "sse2") |
| $XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE] |
| $_MM_CVTEPX8_EPI16 = {"QS8": "_mm_cvtepi8_epi16", "QU8": "_mm_cvtepu8_epi16"}[DATATYPE] |
| $_MM_PACKXS_EPI16 = {"QS8": "_mm_packs_epi16", "QU8": "_mm_packus_epi16"}[DATATYPE] |
| $_MM_MIN_EPX8 = {"QS8": "_mm_min_epi8", "QU8": "_mm_min_epu8"}[DATATYPE] |
| $_MM_MAX_EPX8 = {"QS8": "_mm_max_epi8", "QU8": "_mm_max_epu8"}[DATATYPE] |
| $ISA = "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE] |
| void xnn_${DATATYPE.lower()}_vmulc_minmax_${REQUANTIZATION.lower()}_ukernel__${ISA}_mul16_ld64_x${BATCH_TILE}( |
| size_t n, |
| const ${XINT8_T}* input_a, |
| const ${XINT8_T}* input_b, |
| ${XINT8_T}* output, |
| const union xnn_${DATATYPE.lower()}_mul_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
| |
| { |
| const __m128i va_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.a_zero_point); |
| const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale); |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max); |
| |
| __m128i vxb = _mm_sub_epi16( |
| _mm_shuffle_epi32(_mm_cvtsi32_si128(UINT32_C(0x00010001) * (uint32_t) (uint16_t) (int16_t) *input_b), 0), |
| _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.b_zero_point)); |
| for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) { |
| $if SSE == 4: |
| const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a)); |
| $for N in range(8, BATCH_TILE, 8): |
| const __m128i va${ABC[N:N+8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) (input_a + ${N}))); |
| $else: |
| __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a); |
| $for N in range(8, BATCH_TILE, 8): |
| __m128i va${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i*) (input_a + ${N})); |
| input_a += ${BATCH_TILE}; |
| |
| $if SSE < 4: |
| $if DATATYPE == "QU8": |
| const __m128i vzero = _mm_setzero_si128(); |
| $for N in range(0, BATCH_TILE, 8): |
| va${ABC[N:N+8]} = _mm_unpacklo_epi8(va${ABC[N:N+8]}, vzero); |
| $else: |
| $for N in range(0, BATCH_TILE, 8): |
| va${ABC[N:N+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[N:N+8]}, va${ABC[N:N+8]}), 8); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| const __m128i vxa${ABC[N:N+8]} = _mm_sub_epi16(va${ABC[N:N+8]}, va_zero_point); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| const __m128i vprod${ABC[N:N+8]}lo = _mm_mullo_epi16(vxa${ABC[N:N+8]}, vxb); |
| const __m128i vprod${ABC[N:N+8]}hi = _mm_mulhi_epi16(vxa${ABC[N:N+8]}, vxb); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| const __m128i vprod${ABC[N:N+4]} = _mm_unpacklo_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi); |
| const __m128i vprod${ABC[N+4:N+8]} = _mm_unpackhi_epi16(vprod${ABC[N:N+8]}lo, vprod${ABC[N:N+8]}hi); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| __m128 vfpacc${ABC[N:N+4]} = _mm_cvtepi32_ps(vprod${ABC[N:N+4]}); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| vfpacc${ABC[N:N+4]} = _mm_mul_ps(vfpacc${ABC[N:N+4]}, vscale); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| const __m128i vacc${ABC[N:N+4]} = _mm_cvtps_epi32(vfpacc${ABC[N:N+4]}); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point); |
| |
| $if DATATYPE == "QS8" and SSE < 4: |
| $for N in range(0, BATCH_TILE, 8): |
| vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max); |
| |
| $for N in range(0, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| __m128i vout${ABC[N:N+16]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); |
| $else: |
| __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); |
| |
| $if DATATYPE == "QU8" or SSE == 4: |
| $for N in range(0, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| vout${ABC[N:N+16]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+16]}, voutput_min); |
| $else: |
| vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MAX_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_min); |
| |
| $for N in range(0, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| vout${ABC[N:N+16]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+16]}, voutput_max); |
| $else: |
| vout${ABC[N:N+8]}${ABC[N:N+8]} = ${_MM_MIN_EPX8}(vout${ABC[N:N+8]}${ABC[N:N+8]}, voutput_max); |
| |
| $if BATCH_TILE >= 16: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| $for N in range(16, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); |
| output += ${BATCH_TILE}; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| ${"do " if BATCH_TILE > 8 else ""}{ |
| $if SSE == 4: |
| const __m128i va${ABC[0:8]} = ${_MM_CVTEPX8_EPI16}(_mm_loadl_epi64((const __m128i*) input_a)); |
| $else: |
| __m128i va${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) input_a); |
| $if BATCH_TILE > 8: |
| input_a += 8; |
| |
| $if SSE < 4: |
| $if DATATYPE == "QU8": |
| const __m128i vzero = _mm_setzero_si128(); |
| va${ABC[0:8]} = _mm_unpacklo_epi8(va${ABC[0:8]}, vzero); |
| $else: |
| va${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(va${ABC[0:8]}, va${ABC[0:8]}), 8); |
| |
| const __m128i vxa${ABC[0:8]} = _mm_sub_epi16(va${ABC[0:8]}, va_zero_point); |
| |
| const __m128i vprod${ABC[0:8]}lo = _mm_mullo_epi16(vxa${ABC[0:8]}, vxb); |
| const __m128i vprod${ABC[0:8]}hi = _mm_mulhi_epi16(vxa${ABC[0:8]}, vxb); |
| |
| const __m128i vprod${ABC[0:4]} = _mm_unpacklo_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi); |
| const __m128i vprod${ABC[4:8]} = _mm_unpackhi_epi16(vprod${ABC[0:8]}lo, vprod${ABC[0:8]}hi); |
| |
| __m128 vfpacc${ABC[0:4]} = _mm_cvtepi32_ps(vprod${ABC[0:4]}); |
| __m128 vfpacc${ABC[4:8]} = _mm_cvtepi32_ps(vprod${ABC[4:8]}); |
| |
| vfpacc${ABC[0:4]} = _mm_mul_ps(vfpacc${ABC[0:4]}, vscale); |
| vfpacc${ABC[4:8]} = _mm_mul_ps(vfpacc${ABC[4:8]}, vscale); |
| |
| const __m128i vacc${ABC[0:4]} = _mm_cvtps_epi32(vfpacc${ABC[0:4]}); |
| const __m128i vacc${ABC[4:8]} = _mm_cvtps_epi32(vfpacc${ABC[4:8]}); |
| |
| __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); |
| $if DATATYPE == "QS8" and SSE < 4: |
| vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min); |
| vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max); |
| |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| $if DATATYPE == "QU8" or SSE == 4: |
| vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min); |
| vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max); |
| |
| $if BATCH_TILE > 8: |
| if XNN_LIKELY(n >= (8 * sizeof(${XINT8_T}))) { |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| output += 8; |
| n -= 8 * sizeof(${XINT8_T}); |
| } else { |
| if (n & (4 * sizeof(${XINT8_T}))) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (n & (2 * sizeof(${XINT8_T}))) { |
| $if SSE == 4: |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| $else: |
| unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (n & (1 * sizeof(${XINT8_T}))) { |
| $if SSE == 4: |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| } |
| n = 0; |
| } |
| $else: |
| if (n & (4 * sizeof(${XINT8_T}))) { |
| unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (n & (2 * sizeof(${XINT8_T}))) { |
| $if SSE == 4: |
| unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0)); |
| $else: |
| unaligned_store_u16(output, (uint16_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]})); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (n & (1 * sizeof(${XINT8_T}))) { |
| $if SSE == 4: |
| *output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| } |
| }${" while (n != 0);" if BATCH_TILE > 8 else ""} |
| } |
| } |