blob: 1d14978ec74f8309a379d2f19da2936ec1427af4 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
#ifndef XNN_ENABLE_SPARSE
#error "XNN_ENABLE_SPARSE not defined"
#endif
enum xnn_status xnn_create_subgraph(
uint32_t external_value_ids,
uint32_t flags,
xnn_subgraph_t* subgraph_out)
{
struct xnn_subgraph* subgraph = NULL;
enum xnn_status status = xnn_status_uninitialized;
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create subgraph: XNNPACK is not initialized");
goto error;
}
status = xnn_status_out_of_memory;
subgraph = xnn_allocate_zero_memory(sizeof(struct xnn_subgraph));
if (subgraph == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph descriptor", sizeof(struct xnn_subgraph));
goto error;
}
subgraph->external_value_ids = external_value_ids;
subgraph->values = xnn_allocate_zero_memory(external_value_ids * sizeof(struct xnn_value));
if (subgraph->values == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph values",
(size_t) external_value_ids * sizeof(struct xnn_value));
goto error;
}
for (size_t i = 0; i < external_value_ids; i++) {
subgraph->values[i].id = i;
}
subgraph->num_values = external_value_ids;
subgraph->num_reserved_values = external_value_ids;
*subgraph_out = subgraph;
return xnn_status_success;
error:
xnn_delete_subgraph(subgraph);
return status;
}
struct xnn_value* xnn_subgraph_new_internal_value(xnn_subgraph_t subgraph)
{
struct xnn_value* values = subgraph->values;
const size_t size = subgraph->num_values;
const size_t capacity = subgraph->num_reserved_values;
if (capacity < size + 1) {
const size_t new_capacity = max(min(capacity * 2, capacity + 512), capacity + 64);
assert(new_capacity >= size + 1);
values = xnn_reallocate_memory(values, new_capacity * sizeof(struct xnn_value));
if (values == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph values",
capacity * sizeof(struct xnn_value));
return values;
}
memset(values + size, 0, (new_capacity - size) * sizeof(struct xnn_value));
subgraph->num_reserved_values = new_capacity;
subgraph->values = values;
}
subgraph->num_values = size + 1;
struct xnn_value* new_value = values + size;
new_value->id = size;
return new_value;
}
void xnn_node_clear(struct xnn_node* node) {
assert(node != NULL);
memset(node, 0, sizeof(struct xnn_node));
}
void xnn_value_clear(struct xnn_value* value) {
assert(value != NULL);
memset(value, 0, sizeof(struct xnn_value));
}
void xnn_value_copy(
struct xnn_value* dst_value,
const struct xnn_value* src_value)
{
// Note: Value ID stays unchanged
dst_value->type = src_value->type;
dst_value->datatype = src_value->datatype;
dst_value->quantization = src_value->quantization;
dst_value->shape = src_value->shape;
dst_value->flags = src_value->flags;
dst_value->data = src_value->data;
dst_value->producer = src_value->producer;
dst_value->first_consumer = src_value->first_consumer;
}
struct xnn_node* xnn_subgraph_new_node(xnn_subgraph_t subgraph)
{
struct xnn_node* nodes = subgraph->nodes;
const size_t size = subgraph->num_nodes;
const size_t capacity = subgraph->num_reserved_nodes;
if (capacity < size + 1) {
const size_t new_capacity = max(min(capacity * 2, capacity + 512), capacity + 64);
assert(new_capacity >= size + 1);
nodes = xnn_reallocate_memory(nodes, new_capacity * sizeof(struct xnn_node));
if (nodes == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph nodes",
capacity * sizeof(struct xnn_node));
return nodes;
}
memset(nodes + size, 0, (new_capacity - size) * sizeof(struct xnn_node));
subgraph->num_reserved_nodes = new_capacity;
subgraph->nodes = nodes;
}
subgraph->num_nodes = size + 1;
struct xnn_node* new_node = nodes + size;
new_node->id = size;
return new_node;
}
void xnn_subgraph_add_nodes(xnn_subgraph_t subgraph, size_t num_nodes)
{
struct xnn_node* nodes = subgraph->nodes;
const size_t size = subgraph->num_nodes;
const size_t capacity = subgraph->num_reserved_nodes;
if (capacity < size + num_nodes) {
const size_t new_capacity = max(min(capacity * 2, capacity + 512), capacity + max(num_nodes, 64));
assert(new_capacity >= size + num_nodes);
nodes = xnn_reallocate_memory(nodes, new_capacity * sizeof(struct xnn_node));
if (nodes == NULL) {
xnn_log_error("failed to allocate %zu bytes for subgraph nodes",
capacity * sizeof(struct xnn_node));
return;
}
memset(nodes + size, 0, (new_capacity - size) * sizeof(struct xnn_node));
subgraph->num_reserved_nodes = new_capacity;
subgraph->nodes = nodes;
}
subgraph->num_nodes = size + num_nodes;
struct xnn_node* new_nodes = nodes + size;
for (size_t i = 0; i < num_nodes; i++) {
new_nodes[i].id = size + i;
}
}
void xnn_subgraph_analyze_consumers_and_producers(xnn_subgraph_t subgraph)
{
// Initialize producer/consumer fields to safe defaults.
for (uint32_t i = 0; i < subgraph->num_values; i++) {
struct xnn_value* value = &subgraph->values[i];
value->producer = XNN_INVALID_NODE_ID;
value->first_consumer = XNN_INVALID_NODE_ID;
value->num_consumers = 0;
}
// Analyse Nodes' inputs and output and update Values' producer/consumer fields
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
for (uint32_t i = 0; i < node->num_inputs; i++) {
const uint32_t input_id = node->inputs[i];
assert(input_id < subgraph->num_values);
if (subgraph->values[input_id].num_consumers++ == 0) {
assert(subgraph->values[input_id].first_consumer == XNN_INVALID_NODE_ID);
subgraph->values[input_id].first_consumer = n;
}
}
for (uint32_t o = 0; o < node->num_outputs; o++) {
const uint32_t output_id = node->outputs[o];
assert(output_id < subgraph->num_values);
assert(subgraph->values[output_id].producer == XNN_INVALID_NODE_ID);
subgraph->values[output_id].producer = n;
}
}
// Count extra consumer for Values which are external outputs.
// Remove unreferenced values.
for (uint32_t i = 0; i < subgraph->num_values; i++) {
struct xnn_value* value = &subgraph->values[i];
if (xnn_value_is_external_output(value)) {
value->num_consumers += 1;
}
}
}
#define XNN_LAYOUT_FLAG_COMPATIBLE_NCHW 1
#define XNN_LAYOUT_FLAG_COMPATIBLE_NHWC2NCHW 2
#define XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC 4
#define XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER 8
uint32_t xnn_check_nchw_compatibility(xnn_subgraph_t subgraph, struct xnn_node* node) {
if (node->compute_type != xnn_compute_type_fp32) {
if (node->type != xnn_node_type_invalid) {
xnn_log_info(
"Node %s compute type %d is incompatible with sparse inference",
xnn_node_type_to_string(node->type), node->compute_type);
}
return 0;
}
switch (node->type) {
case xnn_node_type_convolution_2d:
// Supported cases:
// - 1x1 convolution (no stride, no dilation, no padding, no groups)
// - 3x3 stride-2 convolution (no dilation, padding 1 on each side, no groups, 3 input channels)
if (node->params.convolution_2d.groups != 1) {
xnn_log_info("Node %s groups (%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.groups);
return 0;
}
if ((node->params.convolution_2d.dilation_height | node->params.convolution_2d.dilation_width) != 1) {
xnn_log_info("Node %s dilation (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.dilation_height,
node->params.convolution_2d.dilation_width);
return 0;
}
if ((node->params.convolution_2d.kernel_height | node->params.convolution_2d.kernel_width) == 1) {
if ((node->params.convolution_2d.input_padding_top | node->params.convolution_2d.input_padding_right |
node->params.convolution_2d.input_padding_bottom | node->params.convolution_2d.input_padding_left) != 0) {
xnn_log_info("Node %s (1x1 kernel) padding (top=%" PRIu32 ", right=%" PRIu32", bottom=%" PRIu32 ", left=%" PRIu32") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.input_padding_top,
node->params.convolution_2d.input_padding_right,
node->params.convolution_2d.input_padding_bottom,
node->params.convolution_2d.input_padding_left);
return 0;
}
if ((node->params.convolution_2d.subsampling_height | node->params.convolution_2d.subsampling_width) != 1) {
xnn_log_info("Node %s (1x1 kernel) subsampling (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.subsampling_height,
node->params.convolution_2d.subsampling_width);
return 0;
}
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
} else if (node->params.convolution_2d.kernel_height == 3 && node->params.convolution_2d.kernel_width == 3) {
if (node->params.convolution_2d.input_padding_top != 1 || node->params.convolution_2d.input_padding_right != 1 ||
node->params.convolution_2d.input_padding_bottom != 1 || node->params.convolution_2d.input_padding_left != 1) {
xnn_log_info("Node %s (3x3 kernel) padding (top=%" PRIu32 ", right=%" PRIu32 ", bottom=%" PRIu32 ", left=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.input_padding_top,
node->params.convolution_2d.input_padding_right,
node->params.convolution_2d.input_padding_bottom,
node->params.convolution_2d.input_padding_left);
return 0;
}
if ((node->params.convolution_2d.subsampling_height | node->params.convolution_2d.subsampling_width) != 2) {
xnn_log_info("Node %s (3x3 kernel) subsampling (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.subsampling_height,
node->params.convolution_2d.subsampling_width);
return 0;
}
if (node->params.convolution_2d.group_input_channels != 3) {
xnn_log_info("Node %s (3x3 kernel) input channels (%zu) "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.group_input_channels);
return 0;
}
return XNN_LAYOUT_FLAG_COMPATIBLE_NHWC2NCHW;
}
return 0;
case xnn_node_type_depthwise_convolution_2d:
// Supported cases:
// - 3x3 stride-1 convolution (no dilation, padding 1 on each side)
// - 3x3 stride-2 convolution (no dilation, padding 1 on each side)
// - 5x5 stride-1 convolution (no dilation, padding 2 on each side)
// - 5x5 stride-2 convolution (no dilation, padding 2 on each side)
if ((node->params.depthwise_convolution_2d.dilation_height | node->params.depthwise_convolution_2d.dilation_width) != 1) {
xnn_log_info("Node %s dilation (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.convolution_2d.dilation_height,
node->params.convolution_2d.dilation_width);
return 0;
}
if (node->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) {
xnn_log_info("Node %s flags (%" PRIu32 ") has padding incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->flags);
return 0;
}
if (node->params.depthwise_convolution_2d.depth_multiplier != 1) {
xnn_log_info("Node %s depth_multiplier (%" PRIu32 ") is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.depth_multiplier);
return 0;
}
if (node->params.depthwise_convolution_2d.subsampling_height != node->params.depthwise_convolution_2d.subsampling_width) {
xnn_log_info("Node %s subsampling (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.subsampling_height,
node->params.depthwise_convolution_2d.subsampling_width);
return 0;
}
switch (node->params.depthwise_convolution_2d.subsampling_height) {
case 1:
case 2:
break;
default:
xnn_log_info("Node %s subsampling_height (%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.subsampling_height);
return 0;
}
if (node->params.depthwise_convolution_2d.kernel_height != node->params.depthwise_convolution_2d.kernel_width) {
xnn_log_info("Node %s kernel (height=%" PRIu32 ", width=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.kernel_height,
node->params.depthwise_convolution_2d.kernel_width);
return 0;
}
switch (node->params.depthwise_convolution_2d.kernel_height) {
case 3:
if (node->params.depthwise_convolution_2d.input_padding_top == 1 &&
node->params.depthwise_convolution_2d.input_padding_right == 1 &&
node->params.depthwise_convolution_2d.input_padding_bottom == 1 &&
node->params.depthwise_convolution_2d.input_padding_left == 1) {
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
} else {
xnn_log_info("Node %s (3x3 kernel) padding "
"(top=%" PRIu32 ", right=%" PRIu32 ", bottom=%" PRIu32 ", left=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.input_padding_top,
node->params.depthwise_convolution_2d.input_padding_right,
node->params.depthwise_convolution_2d.input_padding_bottom,
node->params.depthwise_convolution_2d.input_padding_left);
return 0;
}
case 5:
if (node->params.depthwise_convolution_2d.input_padding_top == 2 &&
node->params.depthwise_convolution_2d.input_padding_right == 2 &&
node->params.depthwise_convolution_2d.input_padding_bottom == 2 &&
node->params.depthwise_convolution_2d.input_padding_left == 2) {
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
} else {
xnn_log_info("Node %s (5x5 kernel) padding "
"(top=%" PRIu32 ", right=%" PRIu32 ", bottom=%" PRIu32 ", left=%" PRIu32 ") "
"is incompatible with sparse inference",
xnn_node_type_to_string(node->type),
node->params.depthwise_convolution_2d.input_padding_top,
node->params.depthwise_convolution_2d.input_padding_right,
node->params.depthwise_convolution_2d.input_padding_bottom,
node->params.depthwise_convolution_2d.input_padding_left);
return 0;
}
default:
return 0;
}
case xnn_node_type_depth_to_space:
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC;
case xnn_node_type_global_average_pooling_2d:
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC;
case xnn_node_type_add2:
case xnn_node_type_multiply2:
assert(node->num_inputs == 2);
assert(node->num_outputs == 1);
if (subgraph->values[node->inputs[0]].shape.num_dims != 4 ||
subgraph->values[node->inputs[1]].shape.num_dims != 4)
{
xnn_log_info("Node %s inputs shape is incompatible with sparse inference",
xnn_node_type_to_string(node->type));
return 0;
}
if (subgraph->values[node->inputs[0]].data != NULL) {
// Check that the first input is representable as either a scalar, or a vector
size_t num_nonunit_dims = 0;
for (uint32_t i = 0; i < subgraph->values[node->inputs[0]].shape.num_dims; i++) {
if (subgraph->values[node->inputs[0]].shape.dim[i] != 1) {
num_nonunit_dims += 1;
}
}
if (num_nonunit_dims > 1) {
return 0;
}
}
if (subgraph->values[node->inputs[1]].data != NULL) {
// Check that the second input is representable as either a scalar, or a vector
size_t num_nonunit_dims = 0;
for (uint32_t i = 0; i < subgraph->values[node->inputs[0]].shape.num_dims; i++) {
if (subgraph->values[node->inputs[0]].shape.dim[i] != 1) {
num_nonunit_dims += 1;
}
}
if (num_nonunit_dims > 1) {
return 0;
}
}
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
case xnn_node_type_static_resize_bilinear_2d:
if (subgraph->values[node->inputs[0]].shape.dim[1] > 1 &&
subgraph->values[node->inputs[0]].shape.dim[2] > 1) {
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
} else {
xnn_log_info("Node %s inputs shape is incompatible with sparse inference",
xnn_node_type_to_string(node->type));
return 0;
}
case xnn_node_type_abs:
case xnn_node_type_bankers_rounding:
case xnn_node_type_ceiling:
case xnn_node_type_clamp:
case xnn_node_type_elu:
case xnn_node_type_floor:
case xnn_node_type_hardswish:
case xnn_node_type_leaky_relu:
case xnn_node_type_negate:
case xnn_node_type_sigmoid:
case xnn_node_type_square:
assert(node->num_inputs == 1);
assert(node->num_outputs == 1);
if (subgraph->values[node->inputs[0]].shape.num_dims == 4) {
return XNN_LAYOUT_FLAG_COMPATIBLE_NCHW;
} else {
xnn_log_info("Node %s inputs shape is incompatible with sparse inference",
xnn_node_type_to_string(node->type));
return 0;
}
default:
return false;
}
}
void xnn_subgraph_rewrite_for_nchw(xnn_subgraph_t subgraph)
{
// Convert parts of the subgraph to NCHW for sparse inference
// Step 1: detect NCHW-compatible Nodes
// Step 2: detect NCHW-compatible clusters (run connected components graph algorithm)
// Step 3: check that all NCHW-compatible Values are consumed only by NCHW-compatible Nodes
// Step 4: switch Values' layout to NCHW
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
node->layout_flags = xnn_check_nchw_compatibility(subgraph, node);
xnn_log_debug("Node #%" PRIu32 ": %s (NCHW: %s, NHWC->NCHW: %s, NCHW->NHWC: %s)",
n, xnn_node_type_to_string(node->type),
node->layout_flags & XNN_LAYOUT_FLAG_COMPATIBLE_NCHW ? "yes" : "no",
node->layout_flags & XNN_LAYOUT_FLAG_COMPATIBLE_NHWC2NCHW ? "yes" : "no",
node->layout_flags & XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC ? "yes" : "no");
}
// Run Shiloach-Vishkin connected components algorithm i.e. find all
// XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC nodes and set them as cluster leaders
// to all the producer nodes
bool update = false;
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
node->cluster_leader = n;
if (node->layout_flags & XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC) {
for (uint32_t i = 0; i < node->num_inputs; i++) {
const struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->data != NULL) {
// Static data, skip this input value. Compatibility of this static input with NCHW layout was validated
// during the initial NCHW compatibility check for the Node.
continue;
}
if (xnn_value_is_external(value)) {
// External value, invalid cluster
node->layout_flags |= XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
continue;
}
const uint32_t producer_id = value->producer;
assert(producer_id != XNN_INVALID_NODE_ID);
assert(producer_id < n);
struct xnn_node* producer_node = &subgraph->nodes[producer_id];
if ((producer_node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NHWC2NCHW | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW)) != 0 &&
(producer_node->layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) == 0)
{
producer_node->layout_flags &= ~XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC;
if (producer_node->cluster_leader != node->cluster_leader) {
producer_node->cluster_leader = node->cluster_leader = math_max_u32(producer_node->cluster_leader, node->cluster_leader);
update = true;
}
} else {
node->layout_flags |= XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
}
}
}
}
// No NCHW2NHWC compatible nodes have been found thus the graph rewriting
// practically cannot happen.
if (!update) {
return;
}
// Propagate the cluster leader to other nodes in the graph untill all the
// nodes in the cluster is not updated
while (update) {
update = false;
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if (node->layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) {
continue;
}
if ((node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NCHW | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC)) == 0) {
continue;
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
const struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->data != NULL) {
// Static data, skip this input value. Compatibility of this static input with NCHW layout was validated
// during the initial NCHW compatibility check for the Node.
continue;
}
if (xnn_value_is_external(value)) {
// External value, invalid cluster
node->layout_flags |= XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
continue;
}
const uint32_t producer_id = value->producer;
assert(producer_id != XNN_INVALID_NODE_ID);
assert(producer_id < n);
struct xnn_node* producer_node = &subgraph->nodes[producer_id];
if ((producer_node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NHWC2NCHW | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW)) != 0 &&
(producer_node->layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) == 0)
{
producer_node->layout_flags &= ~XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC;
if (producer_node->cluster_leader != node->cluster_leader) {
producer_node->cluster_leader = node->cluster_leader = math_max_u32(producer_node->cluster_leader, node->cluster_leader);
update = true;
}
} else {
node->layout_flags |= XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
}
}
}
}
// Propagate XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER flags up to the cluster leaders
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
subgraph->nodes[node->cluster_leader].layout_flags |= node->layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
}
// Check that all Values consumed by NCHW-compatible cluster don't have NCHW-incompatible consumers
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if ((subgraph->nodes[node->cluster_leader].layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) != 0) {
continue;
}
if ((node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW)) == 0) {
continue;
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->data != NULL) {
// Static data, skip this input value because it doesn't have a producer Node.
continue;
}
assert(!xnn_value_is_external(value));
value->num_nchw_compatible_consumers += 1;
}
}
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if ((subgraph->nodes[node->cluster_leader].layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) != 0) {
continue;
}
if ((node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW)) == 0) {
continue;
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
const struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->data != NULL) {
// Static data, skip this input value because it doesn't have a producer Node.
continue;
}
assert(!xnn_value_is_external(value));
assert(value->num_nchw_compatible_consumers > 0);
if (value->num_nchw_compatible_consumers != value->num_consumers) {
subgraph->nodes[node->cluster_leader].layout_flags |= XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER;
}
}
}
// Evaluate if it is profitable to run the model as sparse:
// - Compute the number of parameters and zeroes in 1x1 Convolution weights
// - Disable sparse rewriting for clusters without 1x1 Convolutions (num_params == 0)
// or with less than 2/3rd of zeroes in 1x1 Convolution filters
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if ((subgraph->nodes[node->cluster_leader].layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) != 0) {
continue;
}
if (node->type == xnn_node_type_convolution_2d &&
max(node->params.convolution_2d.kernel_height, node->params.convolution_2d.kernel_width) == 1)
{
assert(node->num_inputs >= 2);
const struct xnn_value* filter = &subgraph->values[node->inputs[1]];
assert(filter->data != NULL);
assert(filter->shape.num_dims == 4);
const size_t num_params = filter->shape.dim[0] * filter->shape.dim[3];
subgraph->nodes[node->cluster_leader].num_params += num_params;
const float* data = (const float*) filter->data;
size_t num_zeroes = 0;
for (size_t i = 0; i < num_params; i++) {
num_zeroes += (size_t) (data[i] == 0.0f);
}
xnn_log_debug("1x1 Convolution 2D Node #%" PRIu32 ": %zu / %zu sparsity", n, num_zeroes, num_params);
subgraph->nodes[node->cluster_leader].num_zeroes += num_zeroes;
}
}
bool use_nchw_layout = false;
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if ((subgraph->nodes[node->cluster_leader].layout_flags & XNN_LAYOUT_FLAG_INCOMPATIBLE_CLUSTER) != 0) {
continue;
}
if ((node->layout_flags & (XNN_LAYOUT_FLAG_COMPATIBLE_NCHW2NHWC | XNN_LAYOUT_FLAG_COMPATIBLE_NCHW)) == 0) {
continue;
}
if (subgraph->nodes[node->cluster_leader].num_zeroes * 3 <= subgraph->nodes[node->cluster_leader].num_params * 2) {
xnn_log_info("Node #%" PRIu32 ": sparse inference disabled: 1x1 Convolutions contain %zu / %zu zero weights",
n, subgraph->nodes[node->cluster_leader].num_zeroes, subgraph->nodes[node->cluster_leader].num_params);
continue;
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->data != NULL) {
// Static data, skip this input value because it doesn't have a producer Node.
continue;
}
assert(!xnn_value_is_external(value));
assert(value->num_nchw_compatible_consumers > 0);
assert(value->num_nchw_compatible_consumers == value->num_consumers);
if (value->layout != xnn_layout_type_nchw) {
value->layout = xnn_layout_type_nchw;
xnn_log_info("set Value #%"PRIu32" layout to NCHW", node->inputs[i]);
use_nchw_layout = true;
}
}
}
if (use_nchw_layout) {
xnn_log_info("XNNPACK has switched to sparse inference mode!");
}
}
bool xnn_subgraph_rewrite_for_fp16(xnn_subgraph_t subgraph)
{
xnn_log_info("Analyzing subgraph for FP16 compatibility");
// Convert tensors and operators in the subgraph to FP16
// 1. Check that all operators in the subgraph are supported in FP16.
// 2. Indicate values that must be converted to FP16.
// 3. Replace FP32 Values with FP16 Values as Nodes' inputs/outputs.
// 4. Insert FP32->FP16 Convert Nodes for external FP32 inputs and FP16->FP32 Convert Nodes for external outputs.
// Check that all operators in the subgraph are supported in FP16, bail out on any unsupported one.
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if (node->type == xnn_node_type_invalid) {
// Node was fused away, skip.
continue;
}
if (node->compute_type != xnn_compute_type_fp32) {
xnn_log_warning("FP16 rewrite aborted: node #%" PRIu32 " (%s) is not FP32", n, xnn_node_type_to_string(node->type));
return false;
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
if (subgraph->values[node->inputs[i]].layout == xnn_layout_type_nchw) {
xnn_log_warning(
"FP16 rewrite aborted: input #%" PRIu32 " (Value #%" PRIu32 ") of node #%" PRIu32 " (%s) has NCHW layout",
i, node->inputs[i], n, xnn_node_type_to_string(node->type));
return false;
}
}
for (uint32_t o = 0; o < node->num_outputs; o++) {
if (subgraph->values[node->outputs[o]].layout == xnn_layout_type_nchw) {
xnn_log_warning(
"FP16 rewrite aborted: output #%" PRIu32 " (Value #%" PRIu32 ") of node #%" PRIu32 " (%s) has NCHW layout",
o, node->outputs[o], n, xnn_node_type_to_string(node->type));
return false;
}
}
switch (node->type) {
case xnn_node_type_abs:
case xnn_node_type_add2:
case xnn_node_type_divide:
case xnn_node_type_maximum2:
case xnn_node_type_minimum2:
case xnn_node_type_multiply2:
case xnn_node_type_concatenate2:
case xnn_node_type_concatenate3:
case xnn_node_type_concatenate4:
case xnn_node_type_squared_difference:
case xnn_node_type_subtract:
for (uint32_t i = 0; i < node->num_inputs; i++) {
if (subgraph->values[node->inputs[i]].data != NULL) {
xnn_log_warning("FP16 rewrite aborted: node #%" PRIu32 " (%s) has static input %" PRIu32,
n, xnn_node_type_to_string(node->type), i);
return false;
}
}
break;
case xnn_node_type_average_pooling_2d:
case xnn_node_type_bankers_rounding:
case xnn_node_type_ceiling:
case xnn_node_type_clamp:
case xnn_node_type_convolution_2d:
case xnn_node_type_deconvolution_2d:
case xnn_node_type_depthwise_convolution_2d:
case xnn_node_type_depth_to_space:
case xnn_node_type_elu:
case xnn_node_type_even_split2:
case xnn_node_type_even_split3:
case xnn_node_type_even_split4:
case xnn_node_type_floor:
case xnn_node_type_fully_connected:
case xnn_node_type_global_average_pooling_2d:
case xnn_node_type_hardswish:
case xnn_node_type_leaky_relu:
case xnn_node_type_max_pooling_2d:
case xnn_node_type_negate:
case xnn_node_type_prelu:
case xnn_node_type_sigmoid:
case xnn_node_type_softmax:
case xnn_node_type_static_constant_pad:
case xnn_node_type_static_reshape:
case xnn_node_type_static_resize_bilinear_2d:
case xnn_node_type_static_transpose:
case xnn_node_type_square:
case xnn_node_type_square_root:
break;
default:
xnn_log_warning("FP16 rewrite aborted: node #%" PRIu32 " (%s) is not supported for FP16 inference",
n, xnn_node_type_to_string(node->type));
return false;
}
}
// Annotate Values to be converted to FP16 as FP16-compatible.
// Note that static weights in [Depthwise] Convolution, Fully Connected, and PReLU Nodes remain FP32,
// they will be converted to FP16 during weight repacking when the operator is created.
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
switch (node->type) {
case xnn_node_type_convolution_2d:
case xnn_node_type_deconvolution_2d:
case xnn_node_type_depthwise_convolution_2d:
case xnn_node_type_fully_connected:
case xnn_node_type_prelu:
subgraph->values[node->inputs[0]].fp16_compatible = true;
subgraph->values[node->outputs[0]].fp16_compatible = true;
break;
default:
for (uint32_t i = 0; i < node->num_inputs; i++) {
subgraph->values[node->inputs[i]].fp16_compatible = true;
}
for (uint32_t o = 0; o < node->num_outputs; o++) {
subgraph->values[node->outputs[o]].fp16_compatible = true;
}
break;
}
}
// Replace FP32 Values in Nodes' inputs/outputs with FP16 Values.
// FP32 Values that are not external inputs or outputs are converted to FP16 in-place,
// for external inputs and outputs we create same-shaped FP16 Values and use those instead.
const uint32_t num_original_values = subgraph->num_values;
xnn_subgraph_analyze_consumers_and_producers(subgraph);
for (uint32_t n = 0; n < num_original_values; n++) {
struct xnn_value* value = &subgraph->values[n];
value->fp16_id = XNN_INVALID_VALUE_ID;
value->fp32_id = XNN_INVALID_VALUE_ID;
if (value->fp16_compatible) {
assert(value->data == NULL);
assert(value->datatype == xnn_datatype_fp32);
if (xnn_value_is_external(value)) {
struct xnn_value* fp16_value = xnn_subgraph_new_internal_value(subgraph);
// Recompute value due to potential reallocation in xnn_subgraph_new_internal_value
value = &subgraph->values[n];
xnn_value_copy(fp16_value, value);
fp16_value->datatype = xnn_datatype_fp16;
fp16_value->producer = value->producer;
fp16_value->num_consumers = value->num_consumers;
fp16_value->first_consumer = value->first_consumer;
value->producer = XNN_INVALID_NODE_ID;
value->num_consumers = 0;
value->first_consumer = XNN_INVALID_NODE_ID;
// Clear external input/output flags
fp16_value->flags = 0;
xnn_log_debug("FP16 rewrite: created FP16 tensor #%" PRIu32 " for FP32 tensor #%" PRIu32, fp16_value->id, n);
value->fp16_id = fp16_value->id;
fp16_value->fp32_id = n;
} else {
xnn_log_debug("FP16 rewrite: converted FP32 tensor #%" PRIu32 " to FP16", n);
value->datatype = xnn_datatype_fp16;
}
}
}
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
struct xnn_node* node = &subgraph->nodes[n];
if (node->type == xnn_node_type_invalid) {
// Node was fused away, skip.
continue;
}
assert(node->compute_type == xnn_compute_type_fp32);
node->compute_type = xnn_compute_type_fp16;
if (node->type == xnn_node_type_static_constant_pad) {
node->params.static_pad.padding_value =
fp16_ieee_from_fp32_value(uint32_as_float(node->params.static_pad.padding_value));
}
for (uint32_t i = 0; i < node->num_inputs; i++) {
const uint32_t fp16_id = subgraph->values[node->inputs[i]].fp16_id;
if (fp16_id != XNN_INVALID_VALUE_ID) {
assert(subgraph->values[fp16_id].fp32_id == node->inputs[i]);
node->inputs[i] = fp16_id;
}
}
for (uint32_t o = 0; o < node->num_outputs; o++) {
const uint32_t fp16_id = subgraph->values[node->outputs[o]].fp16_id;
if (fp16_id != XNN_INVALID_VALUE_ID) {
assert(subgraph->values[fp16_id].fp32_id == node->outputs[o]);
node->outputs[o] = fp16_id;
}
}
}
// Count the number of external inputs and outputs which require Convert nodes
uint32_t num_external_inputs = 0;
uint32_t num_external_outputs = 0;
for (uint32_t n = 0; n < subgraph->num_nodes; n++) {
const struct xnn_node* node = &subgraph->nodes[n];
for (uint32_t i = 0; i < node->num_inputs; i++) {
const struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->fp32_id != XNN_INVALID_VALUE_ID && value->first_consumer == n) {
assert(value->data == NULL);
assert(value->datatype == xnn_datatype_fp16);
assert(subgraph->values[value->fp32_id].datatype == xnn_datatype_fp32);
// This value isn't always an external input, it could be an external output of the current subgraph (due to
// partition), and be simultaneously consumed by the current node.
if (xnn_value_is_external_input(&subgraph->values[value->fp32_id])) {
num_external_inputs += 1;
}
}
}
for (uint32_t o = 0; o < node->num_outputs; o++) {
const struct xnn_value* value = &subgraph->values[node->outputs[o]];
if (value->fp32_id != XNN_INVALID_VALUE_ID) {
assert(value->datatype == xnn_datatype_fp16);
assert(subgraph->values[value->fp32_id].datatype == xnn_datatype_fp32);
assert(xnn_value_is_external_output(&subgraph->values[value->fp32_id]));
num_external_outputs += 1;
}
}
}
xnn_log_debug("Discovered %"PRIu32" external inputs and %"PRIu32" external outputs",
num_external_inputs, num_external_outputs);
const uint32_t num_original_nodes = subgraph->num_nodes;
xnn_subgraph_add_nodes(subgraph, num_external_inputs + num_external_outputs);
struct xnn_node* output_node = subgraph->nodes + subgraph->num_nodes - 1;
for (uint32_t n = num_original_nodes; n != 0; n--) {
const struct xnn_node* node = &subgraph->nodes[n - 1];
// Insert Convert nodes for outputs
for (uint32_t o = 0; o < node->num_outputs; o++) {
const struct xnn_value* value = &subgraph->values[node->outputs[o]];
if (value->fp32_id != XNN_INVALID_VALUE_ID) {
xnn_log_debug("Inserted FP16->FP32 Convert Node from tensor #%"PRIu32" to tensor #%"PRIu32,
value->id, value->fp32_id);
const uint32_t output_node_id = output_node->id;
assert(output_node >= subgraph->nodes);
xnn_node_clear(output_node);
output_node->id = output_node_id;
xnn_init_convert_node(output_node, xnn_compute_type_fp16_to_fp32, value->id, value->fp32_id, 0 /* flags */);
output_node -= 1;
}
}
// Move the Node to the new location
if (output_node != node) {
const uint32_t output_node_id = output_node->id;
assert(output_node >= subgraph->nodes);
memcpy(output_node, node, sizeof(struct xnn_node));
output_node->id = output_node_id;
output_node -= 1;
}
// Insert Convert nodes for inputs
for (uint32_t i = 0; i < node->num_inputs; i++) {
const struct xnn_value* value = &subgraph->values[node->inputs[i]];
if (value->fp32_id != XNN_INVALID_VALUE_ID && value->first_consumer == n - 1) {
// Only insert convert nodes if the value actually is an external input. This value could be an external output,
// if that's the case, we have already inserted a convert node in loop above for outputs.
if (xnn_value_is_external_input(&subgraph->values[value->fp32_id])) {
xnn_log_debug("Inserted FP32->FP16 Convert Node from tensor #%"PRIu32" to tensor #%"PRIu32,
value->fp32_id, value->id);
const uint32_t output_node_id = output_node->id;
assert(output_node >= subgraph->nodes);
xnn_node_clear(output_node);
output_node->id = output_node_id;
xnn_init_convert_node(output_node, xnn_compute_type_fp32_to_fp16, value->fp32_id, value->id, 0 /* flags */);
output_node -= 1;
}
}
}
}
return true;
}
enum xnn_status xnn_subgraph_fusion(
xnn_subgraph_t subgraph)
{
// Fuse Nodes where possible
for (uint32_t i = 0; i < subgraph->num_values; i++) {
struct xnn_value* value = &subgraph->values[i];
if (value->num_consumers == 1) {
const uint32_t producer_id = value->producer;
if (producer_id == XNN_INVALID_NODE_ID) {
continue;
}
assert(producer_id < subgraph->num_nodes);
const uint32_t consumer_id = value->first_consumer;
if (consumer_id == XNN_INVALID_NODE_ID) {
continue;
}
assert(consumer_id < subgraph->num_nodes);
struct xnn_node* producer = &subgraph->nodes[producer_id];
assert(producer->type != xnn_node_type_invalid);
struct xnn_node* consumer = &subgraph->nodes[consumer_id];
assert(consumer->type != xnn_node_type_invalid);
// Try to fuse Clamp Node upstream into producer Node
if (consumer->type == xnn_node_type_clamp) {
switch (producer->type) {
case xnn_node_type_add2:
case xnn_node_type_average_pooling_2d:
case xnn_node_type_clamp:
case xnn_node_type_convolution_2d:
case xnn_node_type_divide:
case xnn_node_type_deconvolution_2d:
case xnn_node_type_depthwise_convolution_2d:
case xnn_node_type_fully_connected:
case xnn_node_type_multiply2:
case xnn_node_type_max_pooling_2d:
case xnn_node_type_subtract:
xnn_log_info("fuse Clamp Node #%"PRIu32" into upstream Node #%"PRIu32, consumer_id, producer_id);
assert(producer->num_outputs == 1);
assert(consumer->num_inputs == 1);
assert(consumer->num_outputs == 1);
const uint32_t fused_output_id = consumer->outputs[0];
assert(fused_output_id < subgraph->num_values);
subgraph->values[fused_output_id].producer = producer_id;
producer->outputs[0] = fused_output_id;
producer->activation.output_min =
math_max_f32(producer->activation.output_min, consumer->activation.output_min);
producer->activation.output_max =
math_min_f32(producer->activation.output_max, consumer->activation.output_max);
xnn_node_clear(consumer);
xnn_value_clear(value);
break;
default:
break;
}
}
// Try to fuse Constant Pad node downstream into [Depthwise] Convolution 2D Node
if (producer->type == xnn_node_type_static_constant_pad) {
assert(producer->num_inputs == 1);
assert(producer->num_outputs == 1);
const bool is_spatial_2d_padding = value->shape.num_dims == 4 &&
(producer->params.static_pad.pre_paddings[0] | producer->params.static_pad.post_paddings[0] |
producer->params.static_pad.pre_paddings[3] | producer->params.static_pad.post_paddings[3]) == 0;
const enum xnn_datatype padding_datatype = subgraph->values[producer->outputs[0]].datatype;
const uint32_t padding_value = producer->params.static_pad.padding_value;
const bool is_zero_padding =
(padding_datatype == xnn_datatype_fp32 && padding_value == 0) ||
((padding_datatype == xnn_datatype_qint8 || padding_datatype == xnn_datatype_quint8) &&
padding_value == (uint32_t) (uint8_t) subgraph->values[producer->outputs[0]].quantization.zero_point);
switch (consumer->type) {
case xnn_node_type_convolution_2d:
if (is_spatial_2d_padding && is_zero_padding && !(consumer->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING)) {
xnn_log_info("fuse Constant Pad Node #%"PRIu32" into Convolution 2D Node #%"PRIu32,
consumer_id, producer_id);
assert(consumer->num_inputs >= 1);
assert(consumer->inputs[0] == producer->outputs[0]);
consumer->params.convolution_2d.input_padding_top += producer->params.static_pad.pre_paddings[1];
consumer->params.convolution_2d.input_padding_right += producer->params.static_pad.post_paddings[2];
consumer->params.convolution_2d.input_padding_bottom += producer->params.static_pad.post_paddings[1];
consumer->params.convolution_2d.input_padding_left += producer->params.static_pad.pre_paddings[2];
consumer->inputs[0] = producer->inputs[0];
const uint32_t fused_input_id = producer->inputs[0];
assert(fused_input_id < subgraph->num_values);
if (subgraph->values[fused_input_id].first_consumer == producer_id) {
subgraph->values[fused_input_id].first_consumer = consumer_id;
}
xnn_node_clear(producer);
xnn_value_clear(value);
}
break;
case xnn_node_type_depthwise_convolution_2d:
if (is_spatial_2d_padding && is_zero_padding && !(consumer->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING)) {
xnn_log_info("fuse Constant Pad Node #%"PRIu32" into Depthwise Convolution 2D Node #%"PRIu32,
consumer_id, producer_id);
assert(consumer->num_inputs >= 1);
assert(consumer->inputs[0] == producer->outputs[0]);
consumer->params.depthwise_convolution_2d.input_padding_top +=
producer->params.static_pad.pre_paddings[1];
consumer->params.depthwise_convolution_2d.input_padding_right +=
producer->params.static_pad.post_paddings[2];
consumer->params.depthwise_convolution_2d.input_padding_bottom +=
producer->params.static_pad.post_paddings[1];
consumer->params.depthwise_convolution_2d.input_padding_left +=
producer->params.static_pad.pre_paddings[2];
consumer->inputs[0] = producer->inputs[0];
const uint32_t fused_input_id = producer->inputs[0];
assert(fused_input_id < subgraph->num_values);
if (subgraph->values[fused_input_id].first_consumer == producer_id) {
subgraph->values[fused_input_id].first_consumer = consumer_id;
}
xnn_node_clear(producer);
xnn_value_clear(value);
}
break;
default:
break;
}
}
}
}
return xnn_status_success;
}
enum xnn_status xnn_subgraph_optimize(
xnn_subgraph_t subgraph,
uint32_t flags)
{
xnn_subgraph_analyze_consumers_and_producers(subgraph);
// Remove unreferenced values.
for (uint32_t i = 0; i < subgraph->num_values; i++) {
struct xnn_value* value = &subgraph->values[i];
if (value->type == xnn_value_type_invalid) {
continue;
}
if (!xnn_value_is_external_input(value) && value->num_consumers == 0) {
xnn_value_clear(value);
}
}
if (!(flags & XNN_FLAG_NO_OPERATOR_FUSION)) {
xnn_subgraph_fusion(subgraph);
}
#if XNN_ENABLE_SPARSE
if ((flags & XNN_FLAG_HINT_SPARSE_INFERENCE) && (xnn_params.init_flags & XNN_INIT_FLAG_CHW_OPT)) {
xnn_subgraph_rewrite_for_nchw(subgraph);
}
#endif
if ((flags & XNN_FLAG_FORCE_FP16_INFERENCE) && !(xnn_params.init_flags & XNN_INIT_FLAG_F16)) {
xnn_log_error("failed to force FP16 inference: hardware supports neither native nor emulated FP16 operators");
return xnn_status_unsupported_hardware;
}
#ifndef XNN_NO_F16_OPERATORS
const bool try_native_fp16 =
(flags & XNN_FLAG_HINT_FP16_INFERENCE) && (xnn_params.init_flags & XNN_INIT_FLAG_F16_NATIVE);
const bool force_fp16 = (flags & XNN_FLAG_FORCE_FP16_INFERENCE);
if (try_native_fp16 || force_fp16) {
const bool fp16_rewrite_succeeded = xnn_subgraph_rewrite_for_fp16(subgraph);
if (force_fp16 && !fp16_rewrite_succeeded) {
xnn_log_error("failed to force FP16 inference: subgraph is incompatible with FP16 operators");
return xnn_status_unsupported_parameter;
}
}
#endif // XNN_NO_F16_OPERATORS
return xnn_status_success;
}
enum xnn_status xnn_delete_subgraph(
xnn_subgraph_t subgraph)
{
if (subgraph != NULL) {
memset(subgraph->nodes, 0, sizeof(struct xnn_node) * subgraph->num_nodes);
xnn_release_memory(subgraph->nodes);
memset(subgraph->values, 0, sizeof(struct xnn_value) * subgraph->num_values);
xnn_release_memory(subgraph->values);
memset(subgraph, 0, sizeof(struct xnn_subgraph));
xnn_release_memory(subgraph);
}
return xnn_status_success;
}