| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stdint.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/subgraph.h> |
| #include <xnnpack/subgraph-validation.h> |
| |
| static enum xnn_status create_concatenate_operator_helper( |
| const struct xnn_node *node, |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| struct xnn_operator_data *opdata, |
| size_t index) |
| { |
| switch (node->compute_type) { |
| #ifndef XNN_NO_F16_OPERATORS |
| case xnn_compute_type_fp16: { |
| return xnn_create_copy_nc_x16(channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]); |
| } |
| #endif // !defined(XNN_NO_F16_OPERATORS) |
| case xnn_compute_type_fp32: { |
| return xnn_create_copy_nc_x32(channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]); |
| } |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_compute_type_qs8: |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_compute_type_qu8: |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| { |
| return xnn_create_copy_nc_x8(channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]); |
| } |
| #endif // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| XNN_UNREACHABLE; |
| } |
| } |
| |
| static enum xnn_status create_concatenate2_operator( |
| const struct xnn_node* node, |
| const struct xnn_value* values, |
| size_t num_values, |
| struct xnn_operator_data* opdata, |
| const struct xnn_caches* caches) |
| { |
| assert(node->num_inputs == 2); |
| const uint32_t input1_id = node->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_values); |
| const uint32_t input2_id = node->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_values); |
| |
| assert(node->num_outputs == 1); |
| const uint32_t output_id = node->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_values); |
| |
| const size_t axis = node->params.concatenate.axis; |
| size_t batch_size = 1, channels_1 = 1, channels_2 = 1; |
| for (size_t i = 0; i < axis; i++) { |
| batch_size *= values[output_id].shape.dim[i]; |
| } |
| |
| for (size_t i = axis; i < values[input1_id].shape.num_dims; i++) { |
| channels_1 *= values[input1_id].shape.dim[i]; |
| channels_2 *= values[input2_id].shape.dim[i]; |
| } |
| const size_t output_stride = channels_1 + channels_2; |
| |
| enum xnn_status status; |
| status = create_concatenate_operator_helper(node, channels_1, channels_1, output_stride, opdata, 0); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_2, channels_2, output_stride, opdata, 1); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| opdata->inputs[0] = input1_id; |
| opdata->inputs[1] = input2_id; |
| opdata->outputs[0] = output_id; |
| opdata->batch_size = batch_size; |
| |
| return status; |
| } |
| |
| static enum xnn_status create_concatenate3_operator( |
| const struct xnn_node* node, |
| const struct xnn_value* values, |
| size_t num_values, |
| struct xnn_operator_data* opdata, |
| const struct xnn_caches* caches) |
| { |
| assert(node->num_inputs == 3); |
| const uint32_t input1_id = node->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_values); |
| const uint32_t input2_id = node->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_values); |
| const uint32_t input3_id = node->inputs[2]; |
| assert(input3_id != XNN_INVALID_VALUE_ID); |
| assert(input3_id < num_values); |
| |
| assert(node->num_outputs == 1); |
| const uint32_t output_id = node->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_values); |
| |
| const size_t axis = node->params.concatenate.axis; |
| size_t batch_size = 1, channels_1 = 1, channels_2 = 1, channels_3 = 1; |
| for (size_t i = 0; i < axis; i++) { |
| batch_size *= values[output_id].shape.dim[i]; |
| } |
| |
| for (size_t i = axis; i < values[input1_id].shape.num_dims; i++) { |
| channels_1 *= values[input1_id].shape.dim[i]; |
| channels_2 *= values[input2_id].shape.dim[i]; |
| channels_3 *= values[input3_id].shape.dim[i]; |
| } |
| const size_t output_stride = channels_1 + channels_2 + channels_3; |
| |
| enum xnn_status status; |
| status = create_concatenate_operator_helper(node, channels_1, channels_1, output_stride, opdata, 0); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_2, channels_2, output_stride, opdata, 1); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_3, channels_3, output_stride, opdata, 2); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| opdata->inputs[0] = input1_id; |
| opdata->inputs[1] = input2_id; |
| opdata->inputs[2] = input3_id; |
| opdata->outputs[0] = output_id; |
| opdata->batch_size = batch_size; |
| |
| return status; |
| } |
| |
| static enum xnn_status create_concatenate4_operator( |
| const struct xnn_node* node, |
| const struct xnn_value* values, |
| size_t num_values, |
| struct xnn_operator_data* opdata, |
| const struct xnn_caches* caches) |
| { |
| assert(node->num_inputs == 4); |
| const uint32_t input1_id = node->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_values); |
| const uint32_t input2_id = node->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_values); |
| const uint32_t input3_id = node->inputs[2]; |
| assert(input3_id != XNN_INVALID_VALUE_ID); |
| assert(input3_id < num_values); |
| const uint32_t input4_id = node->inputs[3]; |
| assert(input4_id != XNN_INVALID_VALUE_ID); |
| assert(input4_id < num_values); |
| |
| assert(node->num_outputs == 1); |
| const uint32_t output_id = node->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_values); |
| |
| const size_t axis = node->params.concatenate.axis; |
| size_t batch_size = 1, channels_1 = 1, channels_2 = 1, channels_3 = 1, channels_4 = 1; |
| for (size_t i = 0; i < axis; i++) { |
| batch_size *= values[output_id].shape.dim[i]; |
| } |
| |
| for (size_t i = axis; i < values[input1_id].shape.num_dims; i++) { |
| channels_1 *= values[input1_id].shape.dim[i]; |
| channels_2 *= values[input2_id].shape.dim[i]; |
| channels_3 *= values[input3_id].shape.dim[i]; |
| channels_4 *= values[input4_id].shape.dim[i]; |
| } |
| const size_t output_stride = channels_1 + channels_2 + channels_3 + channels_4; |
| |
| enum xnn_status status; |
| status = create_concatenate_operator_helper(node, channels_1, channels_1, output_stride, opdata, 0); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_2, channels_2, output_stride, opdata, 1); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_3, channels_3, output_stride, opdata, 2); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = create_concatenate_operator_helper(node, channels_4, channels_4, output_stride, opdata, 3); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| opdata->inputs[0] = input1_id; |
| opdata->inputs[1] = input2_id; |
| opdata->inputs[2] = input3_id; |
| opdata->inputs[3] = input4_id; |
| opdata->outputs[0] = output_id; |
| opdata->batch_size = batch_size; |
| |
| return status; |
| } |
| |
| static enum xnn_status setup_concatenate_operator_helper( |
| const void* input_data, |
| void* output_data, |
| const struct xnn_operator_data *opdata, |
| size_t index, |
| pthreadpool_t threadpool) |
| { |
| // The output pointer of this operator is the sum of all channels of the earlier operators. |
| size_t channels = 0; |
| for (size_t i = 0; i < index; i++) { |
| channels += opdata->operator_objects[i]->channels; |
| } |
| |
| switch (opdata->operator_objects[index]->type) { |
| #ifndef XNN_NO_F16_OPERATORS |
| case xnn_operator_type_copy_nc_x16: { |
| return xnn_setup_copy_nc_x16( |
| opdata->operator_objects[index], |
| opdata->batch_size, |
| input_data, |
| (uint16_t*) output_data + channels, |
| threadpool); |
| } |
| #endif // !defined(XNN_NO_F16_OPERATORS) |
| case xnn_operator_type_copy_nc_x32: { |
| return xnn_setup_copy_nc_x32( |
| opdata->operator_objects[index], |
| opdata->batch_size, |
| input_data, |
| (uint32_t*) output_data + channels, |
| threadpool); |
| } |
| #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| case xnn_operator_type_copy_nc_x8: { |
| return xnn_setup_copy_nc_x8( |
| opdata->operator_objects[index], |
| opdata->batch_size, |
| input_data, |
| (uint8_t*) output_data + channels, |
| threadpool); |
| } |
| #endif // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| XNN_UNREACHABLE; |
| } |
| } |
| |
| static enum xnn_status setup_concatenate2_operator( |
| const struct xnn_operator_data* opdata, |
| const struct xnn_blob* blobs, |
| size_t num_blobs, |
| pthreadpool_t threadpool) |
| { |
| const uint32_t input1_id = opdata->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_blobs); |
| |
| const uint32_t input2_id = opdata->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_blobs); |
| |
| const uint32_t output_id = opdata->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_blobs); |
| |
| const struct xnn_blob* input1_blob = blobs + input1_id; |
| const void* input1_data = input1_blob->data; |
| assert(input1_data != NULL); |
| |
| const struct xnn_blob* input2_blob = blobs + input2_id; |
| const void* input2_data = input2_blob->data; |
| assert(input2_data != NULL); |
| |
| const struct xnn_blob* output_blob = blobs + output_id; |
| void* output_data = output_blob->data; |
| assert(output_data != NULL); |
| |
| enum xnn_status status; |
| |
| status = setup_concatenate_operator_helper(input1_data, output_data, opdata, 0, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| return setup_concatenate_operator_helper(input2_data, output_data, opdata, 1, threadpool); |
| } |
| |
| static enum xnn_status setup_concatenate3_operator( |
| const struct xnn_operator_data* opdata, |
| const struct xnn_blob* blobs, |
| size_t num_blobs, |
| pthreadpool_t threadpool) |
| { |
| const uint32_t input1_id = opdata->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_blobs); |
| |
| const uint32_t input2_id = opdata->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_blobs); |
| |
| const uint32_t input3_id = opdata->inputs[2]; |
| assert(input3_id != XNN_INVALID_VALUE_ID); |
| assert(input3_id < num_blobs); |
| |
| const uint32_t output_id = opdata->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_blobs); |
| |
| const struct xnn_blob* input1_blob = blobs + input1_id; |
| const void* input1_data = input1_blob->data; |
| assert(input1_data != NULL); |
| |
| const struct xnn_blob* input2_blob = blobs + input2_id; |
| const void* input2_data = input2_blob->data; |
| assert(input2_data != NULL); |
| |
| const struct xnn_blob* input3_blob = blobs + input3_id; |
| const void* input3_data = input3_blob->data; |
| assert(input3_data != NULL); |
| |
| const struct xnn_blob* output_blob = blobs + output_id; |
| void* output_data = output_blob->data; |
| assert(output_data != NULL); |
| |
| enum xnn_status status; |
| |
| status = setup_concatenate_operator_helper(input1_data, output_data, opdata, 0, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = setup_concatenate_operator_helper(input2_data, output_data, opdata, 1, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| return setup_concatenate_operator_helper(input3_data, output_data, opdata, 2, threadpool); |
| } |
| |
| static enum xnn_status setup_concatenate4_operator( |
| const struct xnn_operator_data* opdata, |
| const struct xnn_blob* blobs, |
| size_t num_blobs, |
| pthreadpool_t threadpool) |
| { |
| const uint32_t input1_id = opdata->inputs[0]; |
| assert(input1_id != XNN_INVALID_VALUE_ID); |
| assert(input1_id < num_blobs); |
| |
| const uint32_t input2_id = opdata->inputs[1]; |
| assert(input2_id != XNN_INVALID_VALUE_ID); |
| assert(input2_id < num_blobs); |
| |
| const uint32_t input3_id = opdata->inputs[2]; |
| assert(input3_id != XNN_INVALID_VALUE_ID); |
| assert(input3_id < num_blobs); |
| |
| const uint32_t input4_id = opdata->inputs[3]; |
| assert(input4_id != XNN_INVALID_VALUE_ID); |
| assert(input4_id < num_blobs); |
| |
| const uint32_t output_id = opdata->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_blobs); |
| |
| const struct xnn_blob* input1_blob = blobs + input1_id; |
| const void* input1_data = input1_blob->data; |
| assert(input1_data != NULL); |
| |
| const struct xnn_blob* input2_blob = blobs + input2_id; |
| const void* input2_data = input2_blob->data; |
| assert(input2_data != NULL); |
| |
| const struct xnn_blob* input3_blob = blobs + input3_id; |
| const void* input3_data = input3_blob->data; |
| assert(input3_data != NULL); |
| |
| const struct xnn_blob* input4_blob = blobs + input4_id; |
| const void* input4_data = input4_blob->data; |
| assert(input4_data != NULL); |
| |
| const struct xnn_blob* output_blob = blobs + output_id; |
| void* output_data = output_blob->data; |
| assert(output_data != NULL); |
| |
| enum xnn_status status; |
| |
| status = setup_concatenate_operator_helper(input1_data, output_data, opdata, 0, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = setup_concatenate_operator_helper(input2_data, output_data, opdata, 1, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| status = setup_concatenate_operator_helper(input3_data, output_data, opdata, 2, threadpool); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| return setup_concatenate_operator_helper(input4_data, output_data, opdata, 3, threadpool); |
| } |
| |
| enum xnn_status check_input_value( |
| xnn_subgraph_t subgraph, |
| size_t axis, |
| uint32_t input_id, |
| uint32_t output_id, |
| size_t nth, |
| enum xnn_node_type node_type) |
| { |
| enum xnn_status status; |
| if ((status = xnn_subgraph_check_nth_input_node_id(node_type, input_id, subgraph->num_values, nth)) != |
| xnn_status_success) { |
| return status; |
| } |
| |
| const struct xnn_value* input_value = &subgraph->values[input_id]; |
| status = xnn_subgraph_check_input_type_dense(node_type, input_id, input_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| const struct xnn_value* output_value = &subgraph->values[output_id]; |
| if (input_value->shape.num_dims != output_value->shape.num_dims) { |
| xnn_log_error( |
| "failed to define %s operator with input %zu ID #%" PRIu32 |
| ": mismatch number of dimensions, input %zu has %zu, output has %zu", |
| xnn_node_type_to_string(node_type), nth, input_id, nth, input_value->shape.num_dims, |
| output_value->shape.num_dims); |
| return xnn_status_invalid_parameter; |
| } |
| |
| for (size_t i = 0; i < input_value->shape.num_dims; i++) { |
| if (i != axis && input_value->shape.dim[i] != output_value->shape.dim[i]) { |
| xnn_log_error( |
| "failed to define %s operator with input ID #%" PRIu32 |
| ": mismatch dimension %zu, input %zu has %zu, output has %zu", |
| xnn_node_type_to_string(node_type), input_id, i, nth, input_value->shape.dim[i], output_value->shape.dim[i]); |
| return xnn_status_invalid_parameter; |
| } |
| } |
| |
| status = xnn_subgraph_check_datatype_matches(node_type, input_id, input_value, output_id, output_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| return xnn_status_success; |
| } |
| |
| #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| enum xnn_status check_input_compute_type( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| const char* nth, |
| enum xnn_node_type node_type) |
| { |
| const struct xnn_value* input_value = &subgraph->values[input_id]; |
| const struct xnn_value* output_value = &subgraph->values[output_id]; |
| if (input_value->quantization.zero_point != output_value->quantization.zero_point) { |
| xnn_log_error( |
| "failed to define %s operator with input ID #%" PRIu32 " and output ID #%" PRIu32 |
| ": mismatching quantization zero point across the %s input (%" PRId32 ") and the output (%" PRId32 ")", |
| xnn_node_type_to_string(node_type), input_id, output_id, |
| nth, input_value->quantization.zero_point, output_value->quantization.zero_point); |
| return xnn_status_invalid_parameter; |
| } |
| if (input_value->quantization.scale != output_value->quantization.scale) { |
| xnn_log_error( |
| "failed to define %s operator with input ID #%" PRIu32 " and output ID #%" PRIu32 |
| ": mismatching quantization scale across the %s input (%.7g) and the output (%.7g)", |
| xnn_node_type_to_string(node_type), input_id, output_id, |
| nth, input_value->quantization.scale, output_value->quantization.scale); |
| return xnn_status_invalid_parameter; |
| } |
| return xnn_status_success; |
| } |
| #endif // !defined( XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| |
| enum xnn_status xnn_define_concatenate_n( |
| enum xnn_node_type node_type, |
| xnn_subgraph_t subgraph, |
| size_t axis, |
| size_t num_inputs, |
| uint32_t* input_ids, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| assert(num_inputs >= 2); |
| assert(num_inputs <= 4); |
| |
| enum xnn_status status; |
| if ((status = xnn_subgraph_check_xnnpack_initialized(node_type)) != xnn_status_success) { |
| return status; |
| } |
| |
| status = xnn_subgraph_check_output_node_id(node_type, output_id, subgraph->num_values); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| const struct xnn_value* output_value = &subgraph->values[output_id]; |
| |
| status = xnn_subgraph_check_output_type_dense(node_type, output_id, output_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| if (axis >= output_value->shape.num_dims) { |
| xnn_log_error( |
| "failed to define %s operator with the output ID #%" PRIu32 |
| ": axis (%zu) exceeds the number of dimensions (%zu)", |
| xnn_node_type_to_string(node_type), output_id, axis, output_value->shape.num_dims); |
| return xnn_status_invalid_parameter; |
| } |
| |
| for (size_t i = 0; i < num_inputs; i++) { |
| status = check_input_value(subgraph, axis, input_ids[i], output_id, i+1, node_type); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| } |
| |
| size_t input_axis_dimensions_sum = 0; |
| for (size_t i = 0; i < num_inputs; i++) { |
| const struct xnn_value* input_value = &subgraph->values[input_ids[i]]; |
| input_axis_dimensions_sum += input_value->shape.dim[axis]; |
| } |
| |
| if (output_value->shape.dim[axis] != input_axis_dimensions_sum) { |
| xnn_log_error( |
| "failed to define %s operator with output ID #%" PRIu32 |
| ": mismatch axis dimension %zu, output has %zu, sum of input dimensions is %zu", |
| xnn_node_type_to_string(node_type), output_id, axis, output_value->shape.dim[axis], input_axis_dimensions_sum); |
| return xnn_status_invalid_parameter; |
| } |
| |
| enum xnn_compute_type compute_type = xnn_compute_type_invalid; |
| switch (output_value->datatype) { |
| #ifndef XNN_NO_F16_OPERATORS |
| case xnn_datatype_fp16: |
| compute_type = xnn_compute_type_fp16; |
| break; |
| #endif // !defined(XNN_NO_F16_OPERATORS) |
| case xnn_datatype_fp32: |
| compute_type = xnn_compute_type_fp32; |
| break; |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_datatype_qint8: |
| compute_type = xnn_compute_type_qs8; |
| break; |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_datatype_quint8: |
| compute_type = xnn_compute_type_qu8; |
| break; |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| xnn_log_error( |
| "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)", |
| xnn_node_type_to_string(node_type), output_id, |
| xnn_datatype_to_string(output_value->datatype), output_value->datatype); |
| return xnn_status_invalid_parameter; |
| } |
| |
| #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| if (compute_type == xnn_compute_type_qs8 || compute_type == xnn_compute_type_qu8) { |
| check_input_compute_type(subgraph, input_ids[0], output_id, "first", node_type); |
| check_input_compute_type(subgraph, input_ids[1], output_id, "second", node_type); |
| } |
| if (num_inputs > 2) { |
| check_input_compute_type(subgraph, input_ids[2], output_id, "third", node_type); |
| } |
| if (num_inputs > 3) { |
| check_input_compute_type(subgraph, input_ids[3], output_id, "fourth", node_type); |
| } |
| #endif // !defined( XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) |
| |
| struct xnn_node* node = xnn_subgraph_new_node(subgraph); |
| if (node == NULL) { |
| return xnn_status_out_of_memory; |
| } |
| |
| node->params.concatenate.axis = axis; |
| node->type = node_type; |
| node->compute_type = compute_type; |
| node->num_inputs = num_inputs; |
| node->inputs[0] = input_ids[0]; |
| node->inputs[1] = input_ids[1]; |
| node->num_outputs = 1; |
| node->outputs[0] = output_id; |
| node->flags = flags; |
| |
| switch (num_inputs) { |
| case 2: |
| node->create = create_concatenate2_operator; |
| node->setup = setup_concatenate2_operator; |
| break; |
| case 3: |
| node->create = create_concatenate3_operator; |
| node->setup = setup_concatenate3_operator; |
| node->inputs[2] = input_ids[2]; |
| break; |
| case 4: |
| node->create = create_concatenate4_operator; |
| node->setup = setup_concatenate4_operator; |
| node->inputs[2] = input_ids[2]; |
| node->inputs[3] = input_ids[3]; |
| break; |
| default: |
| XNN_UNREACHABLE; |
| } |
| |
| return xnn_status_success; |
| } |
| |
| enum xnn_status xnn_define_concatenate2( |
| xnn_subgraph_t subgraph, |
| size_t axis, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| uint32_t input_ids[2] = { input1_id, input2_id }; |
| return xnn_define_concatenate_n( |
| xnn_node_type_concatenate2, subgraph, axis, XNN_COUNT_OF(input_ids), input_ids, output_id, flags); |
| } |
| |
| enum xnn_status xnn_define_concatenate3( |
| xnn_subgraph_t subgraph, |
| size_t axis, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t input3_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| uint32_t input_ids[3] = { input1_id, input2_id, input3_id }; |
| return xnn_define_concatenate_n( |
| xnn_node_type_concatenate3, subgraph, axis, XNN_COUNT_OF(input_ids), input_ids, output_id, flags); |
| } |
| |
| enum xnn_status xnn_define_concatenate4( |
| xnn_subgraph_t subgraph, |
| size_t axis, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t input3_id, |
| uint32_t input4_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| uint32_t input_ids[4] = { input1_id, input2_id, input3_id, input4_id }; |
| return xnn_define_concatenate_n( |
| xnn_node_type_concatenate4, subgraph, axis, XNN_COUNT_OF(input_ids), input_ids, output_id, flags); |
| } |