blob: 6c360d9fd914cb27bb2f495f01a10c178f70b339 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdint.h> // For size_t.
#include <xnnpack.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
#include <xnnpack/subgraph-validation.h>
static size_t calculate_batch_size(const struct xnn_value* input, size_t axis)
{
size_t batch_size = 1;
for (size_t i = 0; i < axis; i++) {
batch_size *= input->shape.dim[i];
}
return batch_size;
}
static size_t calculate_input_stride(const struct xnn_value* input, size_t axis)
{
size_t input_stride = 1;
for (size_t i = axis; i < input->shape.num_dims; i++) {
input_stride *= input->shape.dim[i];
}
return input_stride;
}
static enum xnn_status create_even_split_operator_helper(
const uint32_t output_id,
const struct xnn_node* node,
size_t channels,
size_t input_stride,
size_t output_stride,
struct xnn_operator_data* opdata,
size_t index)
{
if (output_id == XNN_INVALID_VALUE_ID) {
// Node's output value has been optimized away, don't even create operator object.
return xnn_status_success;
}
switch (node->compute_type) {
#ifndef XNN_NO_F16_OPERATORS
case xnn_compute_type_fp16: {
return xnn_create_copy_nc_x16(
channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]);
}
#endif // !defined(XNN_NO_F16_OPERATORS)
case xnn_compute_type_fp32: {
return xnn_create_copy_nc_x32(
channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]);
}
#ifndef XNN_NO_QS8_OPERATORS
case xnn_compute_type_qs8:
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_compute_type_qu8:
#endif // !defined(XNN_NO_QU8_OPERATORS)
#if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
{
return xnn_create_copy_nc_x8(
channels, input_stride, output_stride, node->flags, &opdata->operator_objects[index]);
}
#endif // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
}
static enum xnn_status create_even_split2_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
const struct xnn_caches* caches)
{
assert(node->num_inputs == 1);
const uint32_t input_id = node->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_values);
assert(node->num_outputs == 2);
uint32_t output1_id = node->outputs[0];
assert(output1_id != XNN_INVALID_VALUE_ID);
assert(output1_id < num_values);
if (values[output1_id].type == xnn_value_type_invalid) {
output1_id = XNN_INVALID_VALUE_ID;
}
uint32_t output2_id = node->outputs[1];
assert(output2_id != XNN_INVALID_VALUE_ID);
assert(output2_id < num_values);
if (values[output2_id].type == xnn_value_type_invalid) {
output2_id = XNN_INVALID_VALUE_ID;
}
const size_t axis = node->params.even_split.axis;
const size_t batch_size = calculate_batch_size(&values[input_id], axis);
const size_t input_stride = calculate_input_stride(&values[input_id], axis);
assert(input_stride % 2 == 0);
const size_t channels = input_stride / 2;
const size_t output_stride = channels;
enum xnn_status status;
status = create_even_split_operator_helper(output1_id, node, channels, input_stride, output_stride, opdata, 0);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output2_id, node, channels, input_stride, output_stride, opdata, 1);
if (status != xnn_status_success) {
return status;
}
opdata->inputs[0] = input_id;
opdata->outputs[0] = output1_id;
opdata->outputs[1] = output2_id;
opdata->batch_size = batch_size;
return status;
}
static enum xnn_status create_even_split3_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
const struct xnn_caches* caches)
{
assert(node->num_inputs == 1);
const uint32_t input_id = node->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_values);
assert(node->num_outputs == 3);
uint32_t output1_id = node->outputs[0];
if (values[output1_id].type == xnn_value_type_invalid) {
output1_id = XNN_INVALID_VALUE_ID;
}
uint32_t output2_id = node->outputs[1];
if (values[output2_id].type == xnn_value_type_invalid) {
output2_id = XNN_INVALID_VALUE_ID;
}
uint32_t output3_id = node->outputs[2];
if (values[output3_id].type == xnn_value_type_invalid) {
output3_id = XNN_INVALID_VALUE_ID;
}
const size_t axis = node->params.even_split.axis;
const size_t batch_size = calculate_batch_size(&values[input_id], axis);
const size_t input_stride = calculate_input_stride(&values[input_id], axis);
assert(input_stride % 3 == 0);
const size_t channels = input_stride / 3;
const size_t output_stride = channels;
enum xnn_status status;
status = create_even_split_operator_helper(output1_id, node, channels, input_stride, output_stride, opdata, 0);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output2_id, node, channels, input_stride, output_stride, opdata, 1);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output3_id, node, channels, input_stride, output_stride, opdata, 2);
if (status != xnn_status_success) {
return status;
}
opdata->inputs[0] = input_id;
opdata->outputs[0] = output1_id;
opdata->outputs[1] = output2_id;
opdata->outputs[2] = output3_id;
opdata->batch_size = batch_size;
return status;
}
static enum xnn_status create_even_split4_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
const struct xnn_caches* caches)
{
assert(node->num_inputs == 1);
const uint32_t input_id = node->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_values);
assert(node->num_outputs == 4);
uint32_t output1_id = node->outputs[0];
if (values[output1_id].type == xnn_value_type_invalid) {
output1_id = XNN_INVALID_VALUE_ID;
}
uint32_t output2_id = node->outputs[1];
if (values[output2_id].type == xnn_value_type_invalid) {
output2_id = XNN_INVALID_VALUE_ID;
}
uint32_t output3_id = node->outputs[2];
if (values[output3_id].type == xnn_value_type_invalid) {
output3_id = XNN_INVALID_VALUE_ID;
}
uint32_t output4_id = node->outputs[3];
if (values[output4_id].type == xnn_value_type_invalid) {
output4_id = XNN_INVALID_VALUE_ID;
}
const size_t axis = node->params.even_split.axis;
const size_t batch_size = calculate_batch_size(&values[input_id], axis);
const size_t input_stride = calculate_input_stride(&values[input_id], axis);
assert(input_stride % 4 == 0);
const size_t channels = input_stride / 4;
const size_t output_stride = channels;
enum xnn_status status;
status = create_even_split_operator_helper(output1_id, node, channels, input_stride, output_stride, opdata, 0);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output2_id, node, channels, input_stride, output_stride, opdata, 1);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output3_id, node, channels, input_stride, output_stride, opdata, 2);
if (status != xnn_status_success) {
return status;
}
status = create_even_split_operator_helper(output4_id, node, channels, input_stride, output_stride, opdata, 3);
if (status != xnn_status_success) {
return status;
}
opdata->inputs[0] = input_id;
opdata->outputs[0] = output1_id;
opdata->outputs[1] = output2_id;
opdata->outputs[2] = output3_id;
opdata->outputs[3] = output4_id;
opdata->batch_size = batch_size;
return status;
}
static enum xnn_status setup_even_split_operator_helper(
const struct xnn_blob* blobs,
const uint32_t num_blobs,
const struct xnn_operator_data* opdata,
size_t index,
const size_t channels,
const void* input_data,
pthreadpool_t threadpool)
{
const uint32_t output_id = opdata->outputs[index];
if (output_id == XNN_INVALID_VALUE_ID) {
assert(opdata->operator_objects[index] == NULL);
// output_id was removed during optimization.
return xnn_status_success;
}
assert(output_id < num_blobs);
const struct xnn_blob* output_blob = blobs + output_id;
void* output_data = output_blob->data;
assert(output_data != NULL);
switch (opdata->operator_objects[0]->type) {
#ifndef XNN_NO_F16_OPERATORS
case xnn_operator_type_copy_nc_x16: {
return xnn_setup_copy_nc_x16(
opdata->operator_objects[index], opdata->batch_size, (const uint16_t*) input_data + index * channels,
output_data, threadpool);
}
#endif // !defined(XNN_NO_F16_OPERATORS)
case xnn_operator_type_copy_nc_x32: {
return xnn_setup_copy_nc_x32(
opdata->operator_objects[index], opdata->batch_size, (const uint32_t*) input_data + index * channels,
output_data, threadpool);
}
#if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
case xnn_operator_type_copy_nc_x8: {
return xnn_setup_copy_nc_x8(
opdata->operator_objects[index], opdata->batch_size, (const uint8_t*) input_data + index * channels,
output_data, threadpool);
}
#endif // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
}
static enum xnn_status setup_even_split2_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t threadpool)
{
const uint32_t input_id = opdata->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_blobs);
const struct xnn_blob* input_blob = blobs + input_id;
const void* input_data = input_blob->data;
assert(input_data != NULL);
const size_t channels = opdata->operator_objects[0]->channels;
enum xnn_status status = xnn_status_success;
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 0, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 1, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
return status;
}
static enum xnn_status setup_even_split3_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t
threadpool)
{
const uint32_t input_id = opdata->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_blobs);
const struct xnn_blob* input_blob = blobs + input_id;
const void* input_data = input_blob->data;
assert(input_data != NULL);
const size_t channels = opdata->operator_objects[0]->channels;
enum xnn_status status = xnn_status_success;
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 0, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 1, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 2, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
return status;
}
static enum xnn_status setup_even_split4_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t
threadpool)
{
const uint32_t input_id = opdata->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_blobs);
const struct xnn_blob* input_blob = blobs + input_id;
const void* input_data = input_blob->data;
assert(input_data != NULL);
const size_t channels = opdata->operator_objects[0]->channels;
enum xnn_status status = xnn_status_success;
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 0, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 1, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 2, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
status = setup_even_split_operator_helper(blobs, num_blobs, opdata, 3, channels, input_data, threadpool);
if (status != xnn_status_success) {
return status;
}
return status;
}
enum xnn_status check_output_value(
xnn_subgraph_t subgraph,
size_t split_dim,
uint32_t input_id,
uint32_t output_id,
const char* nth,
enum xnn_node_type node_type)
{
const struct xnn_value* input_value = &subgraph->values[input_id];
const struct xnn_value* output_value = &subgraph->values[output_id];
enum xnn_status status;
status = xnn_subgraph_check_output_node_id(node_type, output_id, subgraph->num_values);
if (status != xnn_status_success) {
return status;
}
status = xnn_subgraph_check_output_type_dense(node_type, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
if (input_value->shape.num_dims != output_value->shape.num_dims) {
xnn_log_error(
"failed to define %s operator with %s output ID #%" PRIu32
": mismatch number of dimensions, input has %zu, %s output has %zu",
xnn_node_type_to_string(node_type), nth, output_id, input_value->shape.num_dims,
nth, output_value->shape.num_dims);
return xnn_status_invalid_parameter;
}
for (size_t i = 0; i < input_value->shape.num_dims; i++) {
if (i != split_dim && input_value->shape.dim[i] != output_value->shape.dim[i]) {
xnn_log_error(
"failed to define %s operator with %s output ID #%" PRIu32
": mismatch dimension %zu, %s output has %zu, input has %zu",
xnn_node_type_to_string(node_type), nth, output_id, i, nth, output_value->shape.dim[i],
input_value->shape.dim[i]);
return xnn_status_invalid_parameter;
}
}
status = xnn_subgraph_check_datatype_matches(node_type, input_id, input_value, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
return xnn_status_success;
}
#if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
enum xnn_status check_output_compute_type(
xnn_subgraph_t subgraph,
uint32_t input_id,
uint32_t output_id,
const char* nth,
enum xnn_node_type node_type)
{
const struct xnn_value* input_value = &subgraph->values[input_id];
const struct xnn_value* output_value = &subgraph->values[output_id];
if (input_value->quantization.zero_point != output_value->quantization.zero_point) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 " and output ID #%" PRIu32
": mismatching quantization zero point across the input (%" PRId32 ") and the %s output (%" PRId32 ")",
xnn_node_type_to_string(node_type), input_id, output_id,
input_value->quantization.zero_point, nth, output_value->quantization.zero_point);
return xnn_status_invalid_parameter;
}
if (input_value->quantization.scale != output_value->quantization.scale) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 " and output ID #%" PRIu32
": mismatching quantization scale across the input (%.7g) and the %s output (%.7g)",
xnn_node_type_to_string(node_type), input_id, output_id, input_value->quantization.scale,
nth, output_value->quantization.scale);
return xnn_status_invalid_parameter;
}
return xnn_status_success;
}
#endif // !defined( XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
enum xnn_status xnn_define_even_split_n(
enum xnn_node_type node_type,
xnn_subgraph_t subgraph,
size_t split_dim,
uint32_t input_id,
size_t num_outputs,
const uint32_t* output_ids,
uint32_t flags)
{
assert(num_outputs > 1);
assert(num_outputs < 5);
enum xnn_status status;
if ((status = xnn_subgraph_check_xnnpack_initialized(node_type)) != xnn_status_success) {
return status;
}
if ((status = xnn_subgraph_check_input_node_id(node_type, input_id, subgraph->num_values)) != xnn_status_success) {
return status;
}
const struct xnn_value* input_value = &subgraph->values[input_id];
status = xnn_subgraph_check_input_type_dense(node_type, input_id, input_value);
if (status != xnn_status_success) {
return status;
}
check_output_value(subgraph, split_dim, input_id, output_ids[0], "first", node_type);
check_output_value(subgraph, split_dim, input_id, output_ids[1], "second", node_type);
if (num_outputs > 2) {
check_output_value(subgraph, split_dim, input_id, output_ids[2], "third", node_type);
}
if (num_outputs > 3) {
check_output_value(subgraph, split_dim, input_id, output_ids[3], "fourth", node_type);
}
// Check that the split dimension can be evenly split into outputs.
if (split_dim >= input_value->shape.num_dims) {
xnn_log_error(
"failed to define %s operator with the input ID #%" PRIu32
": split dimension (%zu) exceeds the number of dimensions (%zu)",
xnn_node_type_to_string(node_type), input_id, split_dim, input_value->shape.num_dims);
return xnn_status_invalid_parameter;
}
if (input_value->shape.dim[split_dim] % num_outputs != 0) {
xnn_log_error(
"failed to define %s operator with the input ID #%" PRIu32
": split dimension %zu has value %zu which cannot be evenly split into %zu",
xnn_node_type_to_string(node_type), input_id, split_dim, input_value->shape.dim[split_dim], num_outputs);
return xnn_status_invalid_parameter;
}
// Check that the split dimensions of output add up;
size_t output_dimensions_sum = 0;
for (size_t i = 0; i < num_outputs; i++) {
const struct xnn_value* output_value = &subgraph->values[output_ids[i]];
output_dimensions_sum += output_value->shape.dim[split_dim];
}
if (output_dimensions_sum != input_value->shape.dim[split_dim]) {
xnn_log_error(
"failed to define %s operator with the input ID #%" PRIu32
": input split dimension value (%zu) does not match the sum of output split dimensions value %zu",
xnn_node_type_to_string(node_type), input_id, input_value->shape.dim[split_dim], output_dimensions_sum);
return xnn_status_invalid_parameter;
}
enum xnn_compute_type compute_type = xnn_compute_type_invalid;
switch (input_value->datatype) {
#ifndef XNN_NO_F16_OPERATORS
case xnn_datatype_fp16:
compute_type = xnn_compute_type_fp16;
break;
#endif // !defined(XNN_NO_F16_OPERATORS)
case xnn_datatype_fp32:
compute_type = xnn_compute_type_fp32;
break;
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
compute_type = xnn_compute_type_qs8;
break;
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
compute_type = xnn_compute_type_qu8;
break;
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(node_type), input_id, xnn_datatype_to_string(input_value->datatype),
input_value->datatype);
return xnn_status_invalid_parameter;
}
#if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
if (compute_type == xnn_compute_type_qs8 || compute_type == xnn_compute_type_qu8) {
check_output_compute_type(subgraph, input_id, output_ids[0], "first", node_type);
check_output_compute_type(subgraph, input_id, output_ids[1], "second", node_type);
if (num_outputs > 2) {
check_output_compute_type(subgraph, input_id, output_ids[2], "third", node_type);
}
if (num_outputs > 3) {
check_output_compute_type(subgraph, input_id, output_ids[3], "fourth", node_type);
}
}
#endif // !defined( XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->params.even_split.axis = split_dim;
node->type = node_type;
node->compute_type = compute_type;
node->num_inputs = 1;
node->inputs[0] = input_id;
node->num_outputs = num_outputs;
node->outputs[0] = output_ids[0];
node->outputs[1] = output_ids[1];
switch (num_outputs) {
case 2:
node->create = create_even_split2_operator;
node->setup = setup_even_split2_operator;
break;
case 3:
node->outputs[2] = output_ids[2];
node->create = create_even_split3_operator;
node->setup = setup_even_split3_operator;
break;
case 4:
node->outputs[2] = output_ids[2];
node->outputs[3] = output_ids[3];
node->create = create_even_split4_operator;
node->setup = setup_even_split4_operator;
break;
default:
XNN_UNREACHABLE;
}
node->flags = flags;
return xnn_status_success;
};
enum xnn_status xnn_define_even_split2(
xnn_subgraph_t subgraph,
size_t split_dim,
uint32_t input_id,
uint32_t output1_id,
uint32_t output2_id,
uint32_t flags)
{
const uint32_t output_ids[2] = { output1_id, output2_id };
return xnn_define_even_split_n(
xnn_node_type_even_split2, subgraph, split_dim, input_id, XNN_COUNT_OF(output_ids), output_ids, flags);
}
enum xnn_status xnn_define_even_split3(
xnn_subgraph_t subgraph,
size_t split_dim,
uint32_t input_id,
uint32_t output1_id,
uint32_t output2_id,
uint32_t output3_id,
uint32_t flags)
{
const uint32_t output_ids[3] = { output1_id, output2_id, output3_id };
return xnn_define_even_split_n(
xnn_node_type_even_split3, subgraph, split_dim, input_id, XNN_COUNT_OF(output_ids), output_ids, flags);
}
enum xnn_status xnn_define_even_split4(
xnn_subgraph_t subgraph,
size_t split_dim,
uint32_t input_id,
uint32_t output1_id,
uint32_t output2_id,
uint32_t output3_id,
uint32_t output4_id,
uint32_t flags)
{
const uint32_t output_ids[4] = { output1_id, output2_id, output3_id, output4_id };
return xnn_define_even_split_n(
xnn_node_type_even_split4, subgraph, split_dim, input_id, XNN_COUNT_OF(output_ids), output_ids, flags);
}