| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/requantization.h> |
| #include <xnnpack/subgraph.h> |
| #include <xnnpack/subgraph-validation.h> |
| |
| |
| static enum xnn_status create_global_average_pooling_operator( |
| const struct xnn_node* node, |
| const struct xnn_value* values, |
| size_t num_values, |
| struct xnn_operator_data* opdata, |
| const struct xnn_caches* caches) |
| { |
| assert(node->num_inputs == 1); |
| const uint32_t input_id = node->inputs[0]; |
| assert(input_id != XNN_INVALID_VALUE_ID); |
| assert(input_id < num_values); |
| |
| assert(node->num_outputs == 1); |
| const uint32_t output_id = node->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_values); |
| |
| const size_t num_input_dims = values[input_id].shape.num_dims; |
| assert(num_input_dims >= 1); |
| const size_t channel_dim = values[input_id].shape.dim[num_input_dims - 1]; |
| |
| enum xnn_status status; |
| if (values[node->inputs[0]].layout == xnn_layout_type_nchw) { |
| assert(node->compute_type == xnn_compute_type_fp32); |
| status = xnn_create_global_average_pooling_ncw_f32( |
| channel_dim /* channels */, |
| node->activation.output_min, |
| node->activation.output_max, |
| node->flags, |
| &opdata->operator_objects[0]); |
| } else { |
| assert(values[node->inputs[0]].layout == xnn_layout_type_nhwc); |
| assert(values[node->outputs[0]].layout == xnn_layout_type_nhwc); |
| switch (node->compute_type) { |
| case xnn_compute_type_fp32: |
| status = xnn_create_global_average_pooling_nwc_f32( |
| channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, |
| node->activation.output_min, |
| node->activation.output_max, |
| node->flags, |
| &opdata->operator_objects[0]); |
| break; |
| #ifndef XNN_NO_F16_OPERATORS |
| case xnn_compute_type_fp16: |
| status = xnn_create_global_average_pooling_nwc_f16( |
| channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, |
| node->activation.output_min, |
| node->activation.output_max, |
| node->flags, |
| &opdata->operator_objects[0]); |
| break; |
| #endif // !defined(XNN_NO_F16_OPERATORS) |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_compute_type_qs8: |
| { |
| const float output_scale = values[output_id].quantization.scale; |
| const int32_t output_zero_point = values[output_id].quantization.zero_point; |
| const int8_t output_min = xnn_qs8_quantize(node->activation.output_min, output_scale, output_zero_point); |
| const int8_t output_max = xnn_qs8_quantize(node->activation.output_max, output_scale, output_zero_point); |
| status = xnn_create_global_average_pooling_nwc_qs8( |
| channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, |
| (int8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale, |
| (int8_t) values[output_id].quantization.zero_point, values[output_id].quantization.scale, |
| output_min, |
| output_max, |
| node->flags, |
| &opdata->operator_objects[0]); |
| break; |
| } |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_compute_type_qu8: |
| { |
| const float output_scale = values[output_id].quantization.scale; |
| const int32_t output_zero_point = values[output_id].quantization.zero_point; |
| const uint8_t output_min = xnn_qu8_quantize(node->activation.output_min, output_scale, output_zero_point); |
| const uint8_t output_max = xnn_qu8_quantize(node->activation.output_max, output_scale, output_zero_point); |
| status = xnn_create_global_average_pooling_nwc_qu8( |
| channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */, |
| (uint8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale, |
| (uint8_t) values[output_id].quantization.zero_point, values[output_id].quantization.scale, |
| output_min, |
| output_max, |
| node->flags, |
| &opdata->operator_objects[0]); |
| break; |
| } |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| XNN_UNREACHABLE; |
| } |
| } |
| if (status == xnn_status_success) { |
| switch (node->type) { |
| case xnn_node_type_global_average_pooling_1d: |
| opdata->batch_size = xnn_shape_multiply_batch_dims(&values[input_id].shape, 2); |
| opdata->input_width = values[input_id].shape.dim[num_input_dims - 2]; |
| break; |
| case xnn_node_type_global_average_pooling_2d: |
| opdata->batch_size = xnn_shape_multiply_batch_dims(&values[input_id].shape, 3); |
| opdata->input_width = values[input_id].shape.dim[num_input_dims - 3] * values[input_id].shape.dim[num_input_dims - 2]; |
| break; |
| default: |
| XNN_UNREACHABLE; |
| } |
| opdata->inputs[0] = input_id; |
| opdata->outputs[0] = output_id; |
| } |
| return status; |
| } |
| |
| static enum xnn_status setup_global_average_pooling_operator( |
| const struct xnn_operator_data* opdata, |
| const struct xnn_blob* blobs, |
| size_t num_blobs, |
| pthreadpool_t threadpool) |
| { |
| const uint32_t input_id = opdata->inputs[0]; |
| assert(input_id != XNN_INVALID_VALUE_ID); |
| assert(input_id < num_blobs); |
| |
| const uint32_t output_id = opdata->outputs[0]; |
| assert(output_id != XNN_INVALID_VALUE_ID); |
| assert(output_id < num_blobs); |
| |
| const struct xnn_blob* input_blob = blobs + input_id; |
| const void* input_data = input_blob->data; |
| assert(input_data != NULL); |
| |
| const struct xnn_blob* output_blob = blobs + output_id; |
| void* output_data = output_blob->data; |
| assert(output_data != NULL); |
| |
| switch (opdata->operator_objects[0]->type) { |
| case xnn_operator_type_global_average_pooling_ncw_f32: |
| return xnn_setup_global_average_pooling_ncw_f32( |
| opdata->operator_objects[0], |
| opdata->batch_size, |
| opdata->input_width, |
| input_data, |
| output_data, |
| threadpool); |
| break; |
| case xnn_operator_type_global_average_pooling_nwc_f32: |
| return xnn_setup_global_average_pooling_nwc_f32( |
| opdata->operator_objects[0], |
| opdata->batch_size, |
| opdata->input_width, |
| input_data, |
| output_data, |
| threadpool); |
| break; |
| #ifndef XNN_NO_F16_OPERATORS |
| case xnn_operator_type_global_average_pooling_nwc_f16: |
| return xnn_setup_global_average_pooling_nwc_f16( |
| opdata->operator_objects[0], |
| opdata->batch_size, |
| opdata->input_width, |
| input_data, |
| output_data, |
| threadpool); |
| break; |
| #endif // !defined(XNN_NO_F16_OPERATORS) |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_operator_type_global_average_pooling_nwc_qs8: |
| return xnn_setup_global_average_pooling_nwc_qs8( |
| opdata->operator_objects[0], |
| opdata->batch_size, |
| opdata->input_width, |
| input_data, |
| output_data, |
| threadpool); |
| break; |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_operator_type_global_average_pooling_nwc_qu8: |
| return xnn_setup_global_average_pooling_nwc_qu8( |
| opdata->operator_objects[0], |
| opdata->batch_size, |
| opdata->input_width, |
| input_data, |
| output_data, |
| threadpool); |
| break; |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| XNN_UNREACHABLE; |
| } |
| } |
| |
| static enum xnn_status define_global_average_pooling_nd( |
| xnn_subgraph_t subgraph, |
| enum xnn_node_type node_type, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| enum xnn_status status; |
| if ((status = xnn_subgraph_check_xnnpack_initialized(node_type)) != xnn_status_success) { |
| return status; |
| } |
| |
| status = xnn_subgraph_check_output_min_max(node_type, output_min, output_max); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| status = xnn_subgraph_check_input_node_id(node_type, input_id, subgraph->num_values); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| const struct xnn_value* input_value = &subgraph->values[input_id]; |
| status = xnn_subgraph_check_input_type_dense(node_type, input_id, input_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| switch (input_value->datatype) { |
| case xnn_datatype_fp32: |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_datatype_qint8: |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_datatype_quint8: |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| break; |
| default: |
| xnn_log_error( |
| "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)", |
| xnn_node_type_to_string(node_type), input_id, |
| xnn_datatype_to_string(input_value->datatype), input_value->datatype); |
| return xnn_status_invalid_parameter; |
| } |
| |
| status = xnn_subgraph_check_output_node_id(node_type, output_id, subgraph->num_values); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| const struct xnn_value* output_value = &subgraph->values[output_id]; |
| status = xnn_subgraph_check_output_type_dense(node_type, output_id, output_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| enum xnn_compute_type compute_type = xnn_compute_type_invalid; |
| switch (output_value->datatype) { |
| case xnn_datatype_fp32: |
| compute_type = xnn_compute_type_fp32; |
| break; |
| #ifndef XNN_NO_QS8_OPERATORS |
| case xnn_datatype_qint8: |
| compute_type = xnn_compute_type_qs8; |
| break; |
| #endif // !defined(XNN_NO_QS8_OPERATORS) |
| #ifndef XNN_NO_QU8_OPERATORS |
| case xnn_datatype_quint8: |
| compute_type = xnn_compute_type_qu8; |
| break; |
| #endif // !defined(XNN_NO_QU8_OPERATORS) |
| default: |
| xnn_log_error( |
| "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)", |
| xnn_node_type_to_string(node_type), output_id, |
| xnn_datatype_to_string(output_value->datatype), output_value->datatype); |
| return xnn_status_invalid_parameter; |
| } |
| |
| status = xnn_subgraph_check_datatype_matches( |
| node_type, input_id, input_value, output_id, output_value); |
| if (status != xnn_status_success) { |
| return status; |
| } |
| |
| struct xnn_node* node = xnn_subgraph_new_node(subgraph); |
| if (node == NULL) { |
| return xnn_status_out_of_memory; |
| } |
| |
| node->type = node_type; |
| node->compute_type = compute_type; |
| node->activation.output_min = output_min; |
| node->activation.output_max = output_max; |
| node->num_inputs = 1; |
| node->inputs[0] = input_id; |
| node->num_outputs = 1; |
| node->outputs[0] = output_id; |
| node->flags = flags; |
| |
| node->create = create_global_average_pooling_operator; |
| node->setup = setup_global_average_pooling_operator; |
| |
| return xnn_status_success; |
| } |
| |
| enum xnn_status xnn_define_global_average_pooling_1d( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| return define_global_average_pooling_nd( |
| subgraph, xnn_node_type_global_average_pooling_1d, output_min, output_max, input_id, output_id, flags); |
| } |
| |
| enum xnn_status xnn_define_global_average_pooling_2d( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags) |
| { |
| return define_global_average_pooling_nd( |
| subgraph, xnn_node_type_global_average_pooling_2d, output_min, output_max, input_id, output_id, flags); |
| } |