blob: 0556c1d92c3f51256f3d3c579c03d464eee1f651 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <xnnpack.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
#include <xnnpack/subgraph.h>
#include <xnnpack/subgraph-validation.h>
static enum xnn_status create_global_average_pooling_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
const struct xnn_caches* caches)
{
assert(node->num_inputs == 1);
const uint32_t input_id = node->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_values);
assert(node->num_outputs == 1);
const uint32_t output_id = node->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_values);
const size_t num_input_dims = values[input_id].shape.num_dims;
assert(num_input_dims >= 1);
const size_t channel_dim = values[input_id].shape.dim[num_input_dims - 1];
enum xnn_status status;
if (values[node->inputs[0]].layout == xnn_layout_type_nchw) {
assert(node->compute_type == xnn_compute_type_fp32);
status = xnn_create_global_average_pooling_ncw_f32(
channel_dim /* channels */,
node->activation.output_min,
node->activation.output_max,
node->flags,
&opdata->operator_objects[0]);
} else {
assert(values[node->inputs[0]].layout == xnn_layout_type_nhwc);
assert(values[node->outputs[0]].layout == xnn_layout_type_nhwc);
switch (node->compute_type) {
case xnn_compute_type_fp32:
status = xnn_create_global_average_pooling_nwc_f32(
channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
node->activation.output_min,
node->activation.output_max,
node->flags,
&opdata->operator_objects[0]);
break;
#ifndef XNN_NO_F16_OPERATORS
case xnn_compute_type_fp16:
status = xnn_create_global_average_pooling_nwc_f16(
channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
node->activation.output_min,
node->activation.output_max,
node->flags,
&opdata->operator_objects[0]);
break;
#endif // !defined(XNN_NO_F16_OPERATORS)
#ifndef XNN_NO_QS8_OPERATORS
case xnn_compute_type_qs8:
{
const float output_scale = values[output_id].quantization.scale;
const int32_t output_zero_point = values[output_id].quantization.zero_point;
const int8_t output_min = xnn_qs8_quantize(node->activation.output_min, output_scale, output_zero_point);
const int8_t output_max = xnn_qs8_quantize(node->activation.output_max, output_scale, output_zero_point);
status = xnn_create_global_average_pooling_nwc_qs8(
channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
(int8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale,
(int8_t) values[output_id].quantization.zero_point, values[output_id].quantization.scale,
output_min,
output_max,
node->flags,
&opdata->operator_objects[0]);
break;
}
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_compute_type_qu8:
{
const float output_scale = values[output_id].quantization.scale;
const int32_t output_zero_point = values[output_id].quantization.zero_point;
const uint8_t output_min = xnn_qu8_quantize(node->activation.output_min, output_scale, output_zero_point);
const uint8_t output_max = xnn_qu8_quantize(node->activation.output_max, output_scale, output_zero_point);
status = xnn_create_global_average_pooling_nwc_qu8(
channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
(uint8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale,
(uint8_t) values[output_id].quantization.zero_point, values[output_id].quantization.scale,
output_min,
output_max,
node->flags,
&opdata->operator_objects[0]);
break;
}
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
}
if (status == xnn_status_success) {
switch (node->type) {
case xnn_node_type_global_average_pooling_1d:
opdata->batch_size = xnn_shape_multiply_batch_dims(&values[input_id].shape, 2);
opdata->input_width = values[input_id].shape.dim[num_input_dims - 2];
break;
case xnn_node_type_global_average_pooling_2d:
opdata->batch_size = xnn_shape_multiply_batch_dims(&values[input_id].shape, 3);
opdata->input_width = values[input_id].shape.dim[num_input_dims - 3] * values[input_id].shape.dim[num_input_dims - 2];
break;
default:
XNN_UNREACHABLE;
}
opdata->inputs[0] = input_id;
opdata->outputs[0] = output_id;
}
return status;
}
static enum xnn_status setup_global_average_pooling_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t threadpool)
{
const uint32_t input_id = opdata->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_blobs);
const uint32_t output_id = opdata->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_blobs);
const struct xnn_blob* input_blob = blobs + input_id;
const void* input_data = input_blob->data;
assert(input_data != NULL);
const struct xnn_blob* output_blob = blobs + output_id;
void* output_data = output_blob->data;
assert(output_data != NULL);
switch (opdata->operator_objects[0]->type) {
case xnn_operator_type_global_average_pooling_ncw_f32:
return xnn_setup_global_average_pooling_ncw_f32(
opdata->operator_objects[0],
opdata->batch_size,
opdata->input_width,
input_data,
output_data,
threadpool);
break;
case xnn_operator_type_global_average_pooling_nwc_f32:
return xnn_setup_global_average_pooling_nwc_f32(
opdata->operator_objects[0],
opdata->batch_size,
opdata->input_width,
input_data,
output_data,
threadpool);
break;
#ifndef XNN_NO_F16_OPERATORS
case xnn_operator_type_global_average_pooling_nwc_f16:
return xnn_setup_global_average_pooling_nwc_f16(
opdata->operator_objects[0],
opdata->batch_size,
opdata->input_width,
input_data,
output_data,
threadpool);
break;
#endif // !defined(XNN_NO_F16_OPERATORS)
#ifndef XNN_NO_QS8_OPERATORS
case xnn_operator_type_global_average_pooling_nwc_qs8:
return xnn_setup_global_average_pooling_nwc_qs8(
opdata->operator_objects[0],
opdata->batch_size,
opdata->input_width,
input_data,
output_data,
threadpool);
break;
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_operator_type_global_average_pooling_nwc_qu8:
return xnn_setup_global_average_pooling_nwc_qu8(
opdata->operator_objects[0],
opdata->batch_size,
opdata->input_width,
input_data,
output_data,
threadpool);
break;
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
}
static enum xnn_status define_global_average_pooling_nd(
xnn_subgraph_t subgraph,
enum xnn_node_type node_type,
float output_min,
float output_max,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
enum xnn_status status;
if ((status = xnn_subgraph_check_xnnpack_initialized(node_type)) != xnn_status_success) {
return status;
}
status = xnn_subgraph_check_output_min_max(node_type, output_min, output_max);
if (status != xnn_status_success) {
return status;
}
status = xnn_subgraph_check_input_node_id(node_type, input_id, subgraph->num_values);
if (status != xnn_status_success) {
return status;
}
const struct xnn_value* input_value = &subgraph->values[input_id];
status = xnn_subgraph_check_input_type_dense(node_type, input_id, input_value);
if (status != xnn_status_success) {
return status;
}
switch (input_value->datatype) {
case xnn_datatype_fp32:
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
#endif // !defined(XNN_NO_QU8_OPERATORS)
break;
default:
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(node_type), input_id,
xnn_datatype_to_string(input_value->datatype), input_value->datatype);
return xnn_status_invalid_parameter;
}
status = xnn_subgraph_check_output_node_id(node_type, output_id, subgraph->num_values);
if (status != xnn_status_success) {
return status;
}
const struct xnn_value* output_value = &subgraph->values[output_id];
status = xnn_subgraph_check_output_type_dense(node_type, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
enum xnn_compute_type compute_type = xnn_compute_type_invalid;
switch (output_value->datatype) {
case xnn_datatype_fp32:
compute_type = xnn_compute_type_fp32;
break;
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
compute_type = xnn_compute_type_qs8;
break;
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
compute_type = xnn_compute_type_qu8;
break;
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(node_type), output_id,
xnn_datatype_to_string(output_value->datatype), output_value->datatype);
return xnn_status_invalid_parameter;
}
status = xnn_subgraph_check_datatype_matches(
node_type, input_id, input_value, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = node_type;
node->compute_type = compute_type;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 1;
node->inputs[0] = input_id;
node->num_outputs = 1;
node->outputs[0] = output_id;
node->flags = flags;
node->create = create_global_average_pooling_operator;
node->setup = setup_global_average_pooling_operator;
return xnn_status_success;
}
enum xnn_status xnn_define_global_average_pooling_1d(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
return define_global_average_pooling_nd(
subgraph, xnn_node_type_global_average_pooling_1d, output_min, output_max, input_id, output_id, flags);
}
enum xnn_status xnn_define_global_average_pooling_2d(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
return define_global_average_pooling_nd(
subgraph, xnn_node_type_global_average_pooling_2d, output_min, output_max, input_id, output_id, flags);
}