blob: 0e49e865c6d6fe20b2f17fda1ed5613a9670dd37 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
#include <xnnpack/subgraph.h>
#include <xnnpack/subgraph-validation.h>
static enum xnn_status create_multiply_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata,
const struct xnn_caches* caches)
{
assert(node->num_inputs == 2);
const uint32_t input1_id = node->inputs[0];
assert(input1_id != XNN_INVALID_VALUE_ID);
assert(input1_id < num_values);
const uint32_t input2_id = node->inputs[1];
assert(input2_id != XNN_INVALID_VALUE_ID);
assert(input2_id < num_values);
assert(node->num_outputs == 1);
const uint32_t output_id = node->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_values);
enum xnn_status status;
switch (node->compute_type) {
#ifndef XNN_NO_F16_OPERATORS
case xnn_compute_type_fp16:
status = xnn_create_multiply_nd_f16(
node->activation.output_min,
node->activation.output_max,
node->flags,
&opdata->operator_objects[0]);
break;
#endif // XNN_NO_F16_OPERATORS
case xnn_compute_type_fp32:
status = xnn_create_multiply_nd_f32(
node->activation.output_min,
node->activation.output_max,
node->flags,
&opdata->operator_objects[0]);
break;
#ifndef XNN_NO_QS8_OPERATORS
case xnn_compute_type_qs8:
{
const float output_scale = values[output_id].quantization.scale;
const int32_t output_zero_point = values[output_id].quantization.zero_point;
const int8_t output_min = xnn_qs8_quantize(node->activation.output_min, output_scale, output_zero_point);
const int8_t output_max = xnn_qs8_quantize(node->activation.output_max, output_scale, output_zero_point);
status = xnn_create_multiply_nd_qs8(
(int8_t) values[input1_id].quantization.zero_point,
values[input1_id].quantization.scale,
(int8_t) values[input2_id].quantization.zero_point,
values[input2_id].quantization.scale,
(int8_t) output_zero_point,
output_scale, output_min, output_max, node->flags,
&opdata->operator_objects[0]);
break;
}
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_compute_type_qu8:
{
const float output_scale = values[output_id].quantization.scale;
const int32_t output_zero_point = values[output_id].quantization.zero_point;
const uint8_t output_min = xnn_qu8_quantize(node->activation.output_min, output_scale, output_zero_point);
const uint8_t output_max = xnn_qu8_quantize(node->activation.output_max, output_scale, output_zero_point);
status = xnn_create_multiply_nd_qu8(
(uint8_t) values[input1_id].quantization.zero_point,
values[input1_id].quantization.scale,
(uint8_t) values[input2_id].quantization.zero_point,
values[input2_id].quantization.scale,
(uint8_t) output_zero_point,
output_scale, output_min, output_max, node->flags,
&opdata->operator_objects[0]);
break;
}
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
if (status == xnn_status_success) {
opdata->shape1.num_dims = values[input1_id].shape.num_dims;
opdata->shape2.num_dims = values[input2_id].shape.num_dims;
if (values[output_id].layout == xnn_layout_type_nchw) {
assert(values[input1_id].layout == xnn_layout_type_nchw);
assert(values[input2_id].layout == xnn_layout_type_nchw);
opdata->shape1.dim[0] = values[input1_id].shape.dim[0];
opdata->shape1.dim[1] = values[input1_id].shape.dim[values[input1_id].shape.num_dims - 1];
if (values[input1_id].shape.num_dims > 2) {
memcpy(&opdata->shape1.dim[2], &values[input1_id].shape.dim[1], (values[input1_id].shape.num_dims - 2) * sizeof(size_t));
}
opdata->shape2.dim[0] = values[input2_id].shape.dim[0];
opdata->shape2.dim[1] = values[input2_id].shape.dim[values[input2_id].shape.num_dims - 1];
if (values[input1_id].shape.num_dims > 2) {
memcpy(&opdata->shape2.dim[2], &values[input2_id].shape.dim[1], (values[input2_id].shape.num_dims - 2) * sizeof(size_t));
}
} else {
assert(values[output_id].layout == xnn_layout_type_nhwc);
assert(values[input1_id].layout == xnn_layout_type_nhwc);
assert(values[input2_id].layout == xnn_layout_type_nhwc);
memcpy(opdata->shape1.dim, values[input1_id].shape.dim, values[input1_id].shape.num_dims * sizeof(size_t));
memcpy(opdata->shape2.dim, values[input2_id].shape.dim, values[input2_id].shape.num_dims * sizeof(size_t));
}
opdata->inputs[0] = input1_id;
opdata->inputs[1] = input2_id;
opdata->outputs[0] = output_id;
}
return status;
}
static enum xnn_status setup_multiply_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t threadpool)
{
const uint32_t input1_id = opdata->inputs[0];
assert(input1_id != XNN_INVALID_VALUE_ID);
assert(input1_id < num_blobs);
const uint32_t input2_id = opdata->inputs[1];
assert(input2_id != XNN_INVALID_VALUE_ID);
assert(input2_id < num_blobs);
const uint32_t output_id = opdata->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_blobs);
const struct xnn_blob* input1_blob = blobs + input1_id;
const void* input1_data = input1_blob->data;
assert(input1_data != NULL);
const struct xnn_blob* input2_blob = blobs + input2_id;
const void* input2_data = input2_blob->data;
assert(input2_data != NULL);
const struct xnn_blob* output_blob = blobs + output_id;
void* output_data = output_blob->data;
assert(output_data != NULL);
switch (opdata->operator_objects[0]->type) {
#ifndef XNN_NO_F16_OPERATORS
case xnn_operator_type_multiply_nd_f16:
return xnn_setup_multiply_nd_f16(
opdata->operator_objects[0],
opdata->shape1.num_dims,
opdata->shape1.dim,
opdata->shape2.num_dims,
opdata->shape2.dim,
input1_data, input2_data, output_data,
threadpool);
break;
#endif // !defined(XNN_NO_F16_OPERATORS)
case xnn_operator_type_multiply_nd_f32:
return xnn_setup_multiply_nd_f32(
opdata->operator_objects[0],
opdata->shape1.num_dims,
opdata->shape1.dim,
opdata->shape2.num_dims,
opdata->shape2.dim,
input1_data, input2_data, output_data,
threadpool);
break;
#ifndef XNN_NO_QS8_OPERATORS
case xnn_operator_type_multiply_nd_qs8:
return xnn_setup_multiply_nd_qs8(
opdata->operator_objects[0],
opdata->shape1.num_dims,
opdata->shape1.dim,
opdata->shape2.num_dims,
opdata->shape2.dim,
input1_data, input2_data, output_data,
threadpool);
break;
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_operator_type_multiply_nd_qu8:
return xnn_setup_multiply_nd_qu8(
opdata->operator_objects[0],
opdata->shape1.num_dims,
opdata->shape1.dim,
opdata->shape2.num_dims,
opdata->shape2.dim,
input1_data, input2_data, output_data,
threadpool);
break;
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
XNN_UNREACHABLE;
}
}
enum xnn_status xnn_define_multiply2(
xnn_subgraph_t subgraph,
float output_min,
float output_max,
uint32_t input1_id,
uint32_t input2_id,
uint32_t output_id,
uint32_t flags)
{
enum xnn_status status;
if ((status = xnn_subgraph_check_xnnpack_initialized(xnn_node_type_multiply2)) != xnn_status_success) {
return status;
}
status = xnn_subgraph_check_output_min_max(xnn_node_type_multiply2, output_min, output_max);
if (status != xnn_status_success) {
return status;
}
if ((status = xnn_subgraph_check_nth_input_node_id(
xnn_node_type_multiply2, input1_id, subgraph->num_values, 1)) != xnn_status_success) {
return status;
}
const struct xnn_value* input1_value = &subgraph->values[input1_id];
status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_multiply2, input1_id, input1_value, 1);
if (status != xnn_status_success) {
return status;
}
switch (input1_value->datatype) {
case xnn_datatype_fp32:
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
#endif // !defined(XNN_NO_QU8_OPERATORS)
break;
default:
xnn_log_error(
"failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_multiply2), input1_id,
xnn_datatype_to_string(input1_value->datatype), input1_value->datatype);
return xnn_status_invalid_parameter;
}
if ((status = xnn_subgraph_check_nth_input_node_id(
xnn_node_type_multiply2, input2_id, subgraph->num_values, 2)) != xnn_status_success) {
return status;
}
const struct xnn_value* input2_value = &subgraph->values[input2_id];
status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_multiply2, input2_id, input2_value, 2);
if (status != xnn_status_success) {
return status;
}
switch (input2_value->datatype) {
case xnn_datatype_fp32:
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
#endif // !defined(XNN_NO_QU8_OPERATORS)
break;
default:
xnn_log_error(
"failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_multiply2), input2_id,
xnn_datatype_to_string(input2_value->datatype), input2_value->datatype);
return xnn_status_invalid_parameter;
}
status = xnn_subgraph_check_output_node_id(xnn_node_type_multiply2, output_id, subgraph->num_values);
if (status != xnn_status_success) {
return status;
}
const struct xnn_value* output_value = &subgraph->values[output_id];
status = xnn_subgraph_check_output_type_dense(xnn_node_type_multiply2, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
enum xnn_compute_type compute_type = xnn_compute_type_invalid;
switch (output_value->datatype) {
case xnn_datatype_fp32:
compute_type = xnn_compute_type_fp32;
break;
#ifndef XNN_NO_QS8_OPERATORS
case xnn_datatype_qint8:
compute_type = xnn_compute_type_qs8;
break;
#endif // !defined(XNN_NO_QS8_OPERATORS)
#ifndef XNN_NO_QU8_OPERATORS
case xnn_datatype_quint8:
compute_type = xnn_compute_type_qu8;
break;
#endif // !defined(XNN_NO_QU8_OPERATORS)
default:
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_multiply2), output_id,
xnn_datatype_to_string(output_value->datatype), output_value->datatype);
return xnn_status_invalid_parameter;
}
status = xnn_subgraph_check_datatype_matches_two_inputs(
xnn_node_type_multiply2, input1_id, input1_value, input2_id, input2_value, output_id, output_value);
if (status != xnn_status_success) {
return status;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_multiply2;
node->compute_type = compute_type;
node->activation.output_min = output_min;
node->activation.output_max = output_max;
node->num_inputs = 2;
node->inputs[0] = input1_id;
node->inputs[1] = input2_id;
node->num_outputs = 1;
node->outputs[0] = output_id;
node->flags = flags;
node->create = create_multiply_operator;
node->setup = setup_multiply_operator;
return xnn_status_success;
}