| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/subgraph.h> |
| |
| |
| enum xnn_status xnn_define_tensor_value( |
| xnn_subgraph_t subgraph, |
| enum xnn_datatype datatype, |
| size_t num_dims, |
| const size_t* dims, |
| const void* data, |
| uint32_t external_id, |
| uint32_t flags, |
| uint32_t* id_out) |
| { |
| if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { |
| xnn_log_error("failed to create Dense Tensor value: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) { |
| xnn_log_error( |
| "failed to create Dense Tensor value: " |
| "external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")", |
| external_id, subgraph->external_value_ids); |
| return xnn_status_invalid_parameter; |
| } |
| |
| if (num_dims > XNN_MAX_TENSOR_DIMS) { |
| xnn_log_error("failed to create Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)", |
| XNN_MAX_TENSOR_DIMS); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| switch (datatype) { |
| case xnn_datatype_fp32: |
| case xnn_datatype_fp16: |
| break; |
| default: |
| xnn_log_error("failed to create Dense Tensor value: unsupported datatype %s (%d)", |
| xnn_datatype_to_string(datatype), datatype); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| struct xnn_value* value = subgraph->values + external_id; |
| if (external_id == XNN_INVALID_VALUE_ID) { |
| value = xnn_subgraph_new_internal_value(subgraph); |
| if (value == NULL) { |
| return xnn_status_out_of_memory; |
| } |
| } |
| value->type = xnn_value_type_dense_tensor; |
| value->datatype = datatype; |
| value->shape.num_dims = num_dims; |
| memcpy(value->shape.dim, dims, num_dims * sizeof(size_t)); |
| value->flags = flags; |
| value->data = data; |
| |
| *id_out = value->id; |
| return xnn_status_success; |
| } |
| |
| enum xnn_status xnn_define_quantized_tensor_value( |
| xnn_subgraph_t subgraph, |
| enum xnn_datatype datatype, |
| int32_t zero_point, |
| float scale, |
| size_t num_dims, |
| const size_t* dims, |
| const void* data, |
| uint32_t external_id, |
| uint32_t flags, |
| uint32_t* id_out) |
| { |
| if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { |
| xnn_log_error("failed to create Quantized Dense Tensor value: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value: " |
| "external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")", |
| external_id, subgraph->external_value_ids); |
| return xnn_status_invalid_parameter; |
| } |
| |
| if (num_dims > XNN_MAX_TENSOR_DIMS) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)", |
| XNN_MAX_TENSOR_DIMS); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| switch (datatype) { |
| case xnn_datatype_qint8: |
| if ((int32_t) (int8_t) zero_point != zero_point) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value: invalid zero point %" PRId32" outside the [-128, 127] range", |
| zero_point); |
| return xnn_status_invalid_parameter; |
| } |
| break; |
| case xnn_datatype_quint8: |
| if ((int32_t) (uint8_t) zero_point != zero_point) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value: invalid zero point %" PRId32" outside the [0, 255] range", |
| zero_point); |
| return xnn_status_invalid_parameter; |
| } |
| break; |
| case xnn_datatype_qint32: |
| if (zero_point != 0) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value: invalid non-zero zero point %" PRId32, |
| zero_point); |
| return xnn_status_invalid_parameter; |
| } |
| break; |
| default: |
| xnn_log_error("failed to create Quantized Dense Tensor value: unsupported datatype %s (%d)", |
| xnn_datatype_to_string(datatype), datatype); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| if (scale <= 0.0f || !isnormal(scale)) { |
| xnn_log_error( |
| "failed to create Quantized Dense Tensor value with %.7g scale: scale must be finite, normalized, and positive", |
| scale); |
| return xnn_status_invalid_parameter; |
| } |
| |
| struct xnn_value* value = subgraph->values + external_id; |
| if (external_id == XNN_INVALID_VALUE_ID) { |
| value = xnn_subgraph_new_internal_value(subgraph); |
| if (value == NULL) { |
| return xnn_status_out_of_memory; |
| } |
| } |
| value->type = xnn_value_type_dense_tensor; |
| value->datatype = datatype; |
| value->quantization.zero_point = zero_point; |
| value->quantization.scale = scale; |
| value->shape.num_dims = num_dims; |
| memcpy(value->shape.dim, dims, num_dims * sizeof(size_t)); |
| value->flags = flags; |
| value->data = data; |
| |
| *id_out = value->id; |
| return xnn_status_success; |
| } |
| |
| enum xnn_status xnn_define_channelwise_quantized_tensor_value( |
| xnn_subgraph_t subgraph, |
| enum xnn_datatype datatype, |
| const float* scale, |
| size_t num_dims, |
| size_t channel_dim, |
| const size_t* dims, |
| const void* data, |
| uint32_t external_id, |
| uint32_t flags, |
| uint32_t* id_out) |
| { |
| if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { |
| xnn_log_error("failed to create Channelwise Quantized Dense Tensor value: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) { |
| xnn_log_error( |
| "failed to create Channelwise Quantized Dense Tensor value: " |
| "external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")", |
| external_id, subgraph->external_value_ids); |
| return xnn_status_invalid_parameter; |
| } |
| |
| if (num_dims == 0) { |
| xnn_log_error( |
| "failed to create Channelwise Quantized Dense Tensor value: no channel dimension exists"); |
| return xnn_status_invalid_parameter; |
| } |
| |
| if (num_dims > XNN_MAX_TENSOR_DIMS) { |
| xnn_log_error( |
| "failed to create Channelwise Quantized Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)", |
| XNN_MAX_TENSOR_DIMS); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| if (channel_dim >= num_dims) { |
| xnn_log_error( |
| "failed to create Channelwise Quantized Dense Tensor value: " |
| "channel dimension index %zu is out of range for %zu-dimensional tensor", |
| channel_dim, num_dims); |
| return xnn_status_invalid_parameter; |
| } |
| |
| switch (datatype) { |
| case xnn_datatype_qcint8: |
| case xnn_datatype_qcint32: |
| break; |
| default: |
| xnn_log_error("failed to create Channelwise Quantized Dense Tensor value: unsupported datatype %s (%d)", |
| xnn_datatype_to_string(datatype), datatype); |
| return xnn_status_unsupported_parameter; |
| } |
| |
| const size_t channels = dims[0]; |
| for (size_t channel = 0; channel < channels; channel++) { |
| if (scale[channel] <= 0.0f || !isnormal(scale[channel])) { |
| xnn_log_error( |
| "failed to create Channelwise Quantized Dense Tensor value with %.7g scale in channel #%zu: " |
| "scale must be finite, normalized, and positive", |
| scale[channel], channel); |
| return xnn_status_invalid_parameter; |
| } |
| } |
| |
| struct xnn_value* value = subgraph->values + external_id; |
| if (external_id == XNN_INVALID_VALUE_ID) { |
| value = xnn_subgraph_new_internal_value(subgraph); |
| if (value == NULL) { |
| return xnn_status_out_of_memory; |
| } |
| } |
| value->type = xnn_value_type_dense_tensor; |
| value->datatype = datatype; |
| value->quantization.zero_point = 0; |
| value->quantization.channelwise_scale = scale; |
| value->quantization.channel_dimension = channel_dim; |
| value->shape.num_dims = num_dims; |
| memcpy(value->shape.dim, dims, num_dims * sizeof(size_t)); |
| value->flags = flags; |
| value->data = data; |
| |
| *id_out = value->id; |
| return xnn_status_success; |
| } |
| |
| size_t xnn_shape_multiply_all_dims( |
| const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| size_t batch_size = 1; |
| for (size_t i = 0; i < shape->num_dims; i++) { |
| batch_size *= shape->dim[i]; |
| } |
| return batch_size; |
| } |
| |
| size_t xnn_shape_multiply_batch_dims( |
| const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)], |
| size_t num_nonbatch_dims) |
| { |
| size_t batch_size = 1; |
| for (size_t i = 0; i + num_nonbatch_dims < shape->num_dims; i++) { |
| batch_size *= shape->dim[i]; |
| } |
| return batch_size; |
| } |
| |
| size_t xnn_shape_multiply_non_channel_dims( |
| const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)]) |
| { |
| size_t batch_size = 1; |
| for (size_t i = 0; i + 1 < shape->num_dims; i++) { |
| batch_size *= shape->dim[i]; |
| } |
| return batch_size; |
| } |
| |
| size_t xnn_tensor_get_size( |
| xnn_subgraph_t subgraph, |
| uint32_t value_id) |
| { |
| assert(value_id < subgraph->num_values); |
| |
| const struct xnn_value* value = subgraph->values + value_id; |
| assert(value->type == xnn_value_type_dense_tensor); |
| assert(value->datatype != xnn_datatype_invalid); |
| |
| size_t size = 0; |
| switch (value->datatype) { |
| case xnn_datatype_fp16: |
| size = 2; |
| break; |
| case xnn_datatype_fp32: |
| size = 4; |
| break; |
| case xnn_datatype_qint8: |
| case xnn_datatype_quint8: |
| case xnn_datatype_qcint8: |
| size = 1; |
| break; |
| case xnn_datatype_qint32: |
| case xnn_datatype_qcint32: |
| size = 4; |
| break; |
| case xnn_datatype_invalid: |
| XNN_UNREACHABLE; |
| } |
| |
| return size * xnn_shape_multiply_all_dims(&value->shape); |
| } |