blob: 44092de16ad0dd9c24f601942f6dd0f2e38344be [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
enum xnn_status xnn_define_tensor_value(
xnn_subgraph_t subgraph,
enum xnn_datatype datatype,
size_t num_dims,
const size_t* dims,
const void* data,
uint32_t external_id,
uint32_t flags,
uint32_t* id_out)
{
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create Dense Tensor value: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) {
xnn_log_error(
"failed to create Dense Tensor value: "
"external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")",
external_id, subgraph->external_value_ids);
return xnn_status_invalid_parameter;
}
if (num_dims > XNN_MAX_TENSOR_DIMS) {
xnn_log_error("failed to create Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)",
XNN_MAX_TENSOR_DIMS);
return xnn_status_unsupported_parameter;
}
switch (datatype) {
case xnn_datatype_fp32:
case xnn_datatype_fp16:
break;
default:
xnn_log_error("failed to create Dense Tensor value: unsupported datatype %s (%d)",
xnn_datatype_to_string(datatype), datatype);
return xnn_status_unsupported_parameter;
}
struct xnn_value* value = subgraph->values + external_id;
if (external_id == XNN_INVALID_VALUE_ID) {
value = xnn_subgraph_new_internal_value(subgraph);
if (value == NULL) {
return xnn_status_out_of_memory;
}
}
value->type = xnn_value_type_dense_tensor;
value->datatype = datatype;
value->shape.num_dims = num_dims;
memcpy(value->shape.dim, dims, num_dims * sizeof(size_t));
value->flags = flags;
value->data = data;
*id_out = value->id;
return xnn_status_success;
}
enum xnn_status xnn_define_quantized_tensor_value(
xnn_subgraph_t subgraph,
enum xnn_datatype datatype,
int32_t zero_point,
float scale,
size_t num_dims,
const size_t* dims,
const void* data,
uint32_t external_id,
uint32_t flags,
uint32_t* id_out)
{
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create Quantized Dense Tensor value: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) {
xnn_log_error(
"failed to create Quantized Dense Tensor value: "
"external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")",
external_id, subgraph->external_value_ids);
return xnn_status_invalid_parameter;
}
if (num_dims > XNN_MAX_TENSOR_DIMS) {
xnn_log_error(
"failed to create Quantized Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)",
XNN_MAX_TENSOR_DIMS);
return xnn_status_unsupported_parameter;
}
switch (datatype) {
case xnn_datatype_qint8:
if ((int32_t) (int8_t) zero_point != zero_point) {
xnn_log_error(
"failed to create Quantized Dense Tensor value: invalid zero point %" PRId32" outside the [-128, 127] range",
zero_point);
return xnn_status_invalid_parameter;
}
break;
case xnn_datatype_quint8:
if ((int32_t) (uint8_t) zero_point != zero_point) {
xnn_log_error(
"failed to create Quantized Dense Tensor value: invalid zero point %" PRId32" outside the [0, 255] range",
zero_point);
return xnn_status_invalid_parameter;
}
break;
case xnn_datatype_qint32:
if (zero_point != 0) {
xnn_log_error(
"failed to create Quantized Dense Tensor value: invalid non-zero zero point %" PRId32,
zero_point);
return xnn_status_invalid_parameter;
}
break;
default:
xnn_log_error("failed to create Quantized Dense Tensor value: unsupported datatype %s (%d)",
xnn_datatype_to_string(datatype), datatype);
return xnn_status_unsupported_parameter;
}
if (scale <= 0.0f || !isnormal(scale)) {
xnn_log_error(
"failed to create Quantized Dense Tensor value with %.7g scale: scale must be finite, normalized, and positive",
scale);
return xnn_status_invalid_parameter;
}
struct xnn_value* value = subgraph->values + external_id;
if (external_id == XNN_INVALID_VALUE_ID) {
value = xnn_subgraph_new_internal_value(subgraph);
if (value == NULL) {
return xnn_status_out_of_memory;
}
}
value->type = xnn_value_type_dense_tensor;
value->datatype = datatype;
value->quantization.zero_point = zero_point;
value->quantization.scale = scale;
value->shape.num_dims = num_dims;
memcpy(value->shape.dim, dims, num_dims * sizeof(size_t));
value->flags = flags;
value->data = data;
*id_out = value->id;
return xnn_status_success;
}
enum xnn_status xnn_define_channelwise_quantized_tensor_value(
xnn_subgraph_t subgraph,
enum xnn_datatype datatype,
const float* scale,
size_t num_dims,
size_t channel_dim,
const size_t* dims,
const void* data,
uint32_t external_id,
uint32_t flags,
uint32_t* id_out)
{
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to create Channelwise Quantized Dense Tensor value: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (external_id != XNN_INVALID_VALUE_ID && external_id >= subgraph->external_value_ids) {
xnn_log_error(
"failed to create Channelwise Quantized Dense Tensor value: "
"external ID %" PRIu32 " exceeds the number of reserved external IDs in subgraph (%" PRIu32 ")",
external_id, subgraph->external_value_ids);
return xnn_status_invalid_parameter;
}
if (num_dims == 0) {
xnn_log_error(
"failed to create Channelwise Quantized Dense Tensor value: no channel dimension exists");
return xnn_status_invalid_parameter;
}
if (num_dims > XNN_MAX_TENSOR_DIMS) {
xnn_log_error(
"failed to create Channelwise Quantized Dense Tensor value: num of dimensions exceeds XNNPACK limit (%d)",
XNN_MAX_TENSOR_DIMS);
return xnn_status_unsupported_parameter;
}
if (channel_dim >= num_dims) {
xnn_log_error(
"failed to create Channelwise Quantized Dense Tensor value: "
"channel dimension index %zu is out of range for %zu-dimensional tensor",
channel_dim, num_dims);
return xnn_status_invalid_parameter;
}
switch (datatype) {
case xnn_datatype_qcint8:
case xnn_datatype_qcint32:
break;
default:
xnn_log_error("failed to create Channelwise Quantized Dense Tensor value: unsupported datatype %s (%d)",
xnn_datatype_to_string(datatype), datatype);
return xnn_status_unsupported_parameter;
}
const size_t channels = dims[0];
for (size_t channel = 0; channel < channels; channel++) {
if (scale[channel] <= 0.0f || !isnormal(scale[channel])) {
xnn_log_error(
"failed to create Channelwise Quantized Dense Tensor value with %.7g scale in channel #%zu: "
"scale must be finite, normalized, and positive",
scale[channel], channel);
return xnn_status_invalid_parameter;
}
}
struct xnn_value* value = subgraph->values + external_id;
if (external_id == XNN_INVALID_VALUE_ID) {
value = xnn_subgraph_new_internal_value(subgraph);
if (value == NULL) {
return xnn_status_out_of_memory;
}
}
value->type = xnn_value_type_dense_tensor;
value->datatype = datatype;
value->quantization.zero_point = 0;
value->quantization.channelwise_scale = scale;
value->quantization.channel_dimension = channel_dim;
value->shape.num_dims = num_dims;
memcpy(value->shape.dim, dims, num_dims * sizeof(size_t));
value->flags = flags;
value->data = data;
*id_out = value->id;
return xnn_status_success;
}
size_t xnn_shape_multiply_all_dims(
const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)])
{
size_t batch_size = 1;
for (size_t i = 0; i < shape->num_dims; i++) {
batch_size *= shape->dim[i];
}
return batch_size;
}
size_t xnn_shape_multiply_batch_dims(
const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)],
size_t num_nonbatch_dims)
{
size_t batch_size = 1;
for (size_t i = 0; i + num_nonbatch_dims < shape->num_dims; i++) {
batch_size *= shape->dim[i];
}
return batch_size;
}
size_t xnn_shape_multiply_non_channel_dims(
const struct xnn_shape shape[restrict XNN_MIN_ELEMENTS(1)])
{
size_t batch_size = 1;
for (size_t i = 0; i + 1 < shape->num_dims; i++) {
batch_size *= shape->dim[i];
}
return batch_size;
}
size_t xnn_tensor_get_size(
xnn_subgraph_t subgraph,
uint32_t value_id)
{
assert(value_id < subgraph->num_values);
const struct xnn_value* value = subgraph->values + value_id;
assert(value->type == xnn_value_type_dense_tensor);
assert(value->datatype != xnn_datatype_invalid);
size_t size = 0;
switch (value->datatype) {
case xnn_datatype_fp16:
size = 2;
break;
case xnn_datatype_fp32:
size = 4;
break;
case xnn_datatype_qint8:
case xnn_datatype_quint8:
case xnn_datatype_qcint8:
size = 1;
break;
case xnn_datatype_qint32:
case xnn_datatype_qcint32:
size = 4;
break;
case xnn_datatype_invalid:
XNN_UNREACHABLE;
}
return size * xnn_shape_multiply_all_dims(&value->shape);
}