| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| |
| class AbsOperatorTester { |
| public: |
| inline AbsOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline AbsOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->input_stride_ >= this->channels_); |
| return this->input_stride_; |
| } |
| } |
| |
| inline AbsOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->output_stride_ >= this->channels_); |
| return this->output_stride_; |
| } |
| } |
| |
| inline AbsOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline AbsOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestF16() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f); |
| |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<uint16_t> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[i * channels() + c] = input[i * input_stride() + c] & UINT16_C(0x7FFF); |
| } |
| } |
| |
| // Create, setup, run, and destroy Abs operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t abs_op = nullptr; |
| |
| const xnn_status status = xnn_create_abs_nc_f16( |
| channels(), input_stride(), output_stride(), |
| 0, &abs_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, abs_op); |
| |
| // Smart pointer to automatically delete abs_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_abs_op(abs_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_abs_nc_f16( |
| abs_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(abs_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c]) |
| << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void TestF32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f); |
| |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<float> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[i * channels() + c] = std::fabs(input[i * input_stride() + c]); |
| } |
| } |
| |
| // Create, setup, run, and destroy Abs operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t abs_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_abs_nc_f32( |
| channels(), input_stride(), output_stride(), |
| 0, &abs_op)); |
| ASSERT_NE(nullptr, abs_op); |
| |
| // Smart pointer to automatically delete abs_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_abs_op(abs_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_abs_nc_f32( |
| abs_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(abs_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c]) |
| << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| size_t iterations_{15}; |
| }; |