| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <memory> |
| #include <random> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/node-type.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/subgraph.h> |
| |
| #include <gtest/gtest.h> |
| |
| namespace { |
| inline size_t compute_output_dimension(size_t padded_input_dimension, size_t kernel_dimension) |
| { |
| return padded_input_dimension / kernel_dimension; |
| } |
| } // namespace |
| |
| class ArgmaxPoolingTestF32 : public ::testing::Test { |
| protected: |
| ArgmaxPoolingTestF32() |
| { |
| random_device = std::unique_ptr<std::random_device>(new std::random_device()); |
| rng = std::mt19937((*random_device)()); |
| input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15); |
| pooling_size_dist = std::uniform_int_distribution<uint32_t>(2, 5); |
| batch_size = input_size_dist(rng); |
| input_height = input_size_dist(rng); |
| input_width = input_size_dist(rng); |
| channels = input_size_dist(rng); |
| pooling_height = pooling_size_dist(rng); |
| pooling_width = pooling_size_dist(rng); |
| input_padding_top = input_size_dist(rng); |
| input_padding_right = input_size_dist(rng); |
| input_padding_bottom = input_size_dist(rng); |
| input_padding_left = input_size_dist(rng); |
| output_height = compute_output_dimension(input_height + input_padding_top + input_padding_bottom, pooling_height); |
| output_width = compute_output_dimension(input_width + input_padding_left + input_padding_right, pooling_width); |
| input_dims = {batch_size, input_height, input_width, channels}; |
| output_dims = {batch_size, output_height, output_width, channels}; |
| input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + batch_size * input_height * input_width * channels); |
| operator_output = std::vector<float>(batch_size * output_height * output_width * channels); |
| operator_output_index = std::vector<uint32_t>(batch_size * output_height * output_width * channels); |
| subgraph_output = std::vector<float>(batch_size * output_height * output_width * channels); |
| subgraph_output_index = std::vector<uint32_t>(batch_size * output_height * output_width * channels); |
| } |
| |
| std::unique_ptr<std::random_device> random_device; |
| std::mt19937 rng; |
| std::uniform_int_distribution<uint32_t> input_size_dist; |
| std::uniform_int_distribution<uint32_t> pooling_size_dist; |
| uint32_t batch_size; |
| uint32_t input_height; |
| uint32_t input_width; |
| uint32_t channels; |
| uint32_t pooling_height; |
| uint32_t pooling_width; |
| uint32_t output_height; |
| uint32_t output_width; |
| std::array<size_t, 4> input_dims; |
| std::array<size_t, 4> output_dims; |
| uint32_t input_padding_top; |
| uint32_t input_padding_right; |
| uint32_t input_padding_bottom; |
| uint32_t input_padding_left; |
| |
| uint32_t input_id; |
| uint32_t output_value_id; |
| uint32_t output_index_id; |
| |
| std::vector<float> input; |
| std::vector<float> operator_output; |
| std::vector<uint32_t> operator_output_index; |
| std::vector<float> subgraph_output; |
| std::vector<uint32_t> subgraph_output_index; |
| }; |
| |
| TEST_F(ArgmaxPoolingTestF32, define) |
| { |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output_value_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id)); |
| ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID); |
| |
| output_index_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id)); |
| ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_argmax_pooling_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, |
| pooling_height, pooling_width, input_id, output_value_id, output_index_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_argmax_pooling_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
| ASSERT_EQ(node->params.pooling_2d.padding_top, input_padding_top); |
| ASSERT_EQ(node->params.pooling_2d.padding_right, input_padding_right); |
| ASSERT_EQ(node->params.pooling_2d.padding_bottom, input_padding_bottom); |
| ASSERT_EQ(node->params.pooling_2d.padding_left, input_padding_left); |
| ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
| ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 2); |
| ASSERT_EQ(node->outputs[0], output_value_id); |
| ASSERT_EQ(node->outputs[1], output_index_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(ArgmaxPoolingTestF32, matches_operator_api) |
| { |
| std::uniform_real_distribution<float> f32dist(-255.0f, 255.0f); |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), nanf("")); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| // Call operator API. |
| xnn_operator_t op = nullptr; |
| const xnn_status status = xnn_create_argmax_pooling2d_nhwc_f32( |
| input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, |
| channels, channels, channels, /*flags=*/0, &op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_argmax_pooling2d_nhwc_f32( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| operator_output_index.data(), /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output_value_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id)); |
| ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID); |
| |
| output_index_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id)); |
| ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_argmax_pooling_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, |
| pooling_height, pooling_width, input_id, output_value_id, output_index_id, |
| /*flags=*/0)); |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 3> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_value_id, subgraph_output.data()}, |
| xnn_external_value{output_index_id, subgraph_output_index.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |