| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| |
| |
| class ArgMaxPoolMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline ArgMaxPoolMicrokernelTester& output_pixels(size_t output_pixels) { |
| assert(output_pixels != 0); |
| this->output_pixels_ = output_pixels; |
| return *this; |
| } |
| |
| inline size_t output_pixels() const { |
| return this->output_pixels_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& step(size_t step) { |
| assert(step != 0); |
| this->step_ = step; |
| return *this; |
| } |
| |
| inline size_t step() const { |
| return this->step_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& input_offset(size_t input_offset) { |
| assert(input_offset != 0); |
| this->input_offset_ = input_offset; |
| return *this; |
| } |
| |
| inline size_t input_offset() const { |
| return this->input_offset_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& pooling_elements(size_t pooling_elements) { |
| assert(pooling_elements != 0); |
| this->pooling_elements_ = pooling_elements; |
| return *this; |
| } |
| |
| inline size_t pooling_elements() const { |
| return this->pooling_elements_; |
| } |
| |
| inline size_t packed_pooling_elements() const { |
| if (pooling_elements() <= primary_pooling_tile()) { |
| return primary_pooling_tile(); |
| } else { |
| return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile(); |
| } |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile) { |
| assert(primary_tile != 0); |
| this->primary_pooling_tile_ = primary_tile; |
| this->incremental_pooling_tile_ = 0; |
| return *this; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile) { |
| assert(primary_tile != 0); |
| this->primary_pooling_tile_ = primary_tile; |
| this->incremental_pooling_tile_ = incremental_tile; |
| return *this; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) { |
| assert(primary_pooling_tile != 0); |
| this->primary_pooling_tile_ = primary_pooling_tile; |
| return *this; |
| } |
| |
| inline size_t primary_pooling_tile() const { |
| return this->primary_pooling_tile_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) { |
| assert(incremental_pooling_tile != 0); |
| this->incremental_pooling_tile_ = incremental_pooling_tile; |
| return *this; |
| } |
| |
| inline size_t incremental_pooling_tile() const { |
| return this->incremental_pooling_tile_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->output_stride_ >= channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline ArgMaxPoolMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f32_argmaxpool_unipass_ukernel_function argmaxpool, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| ((output_pixels() - 1) * step() + pooling_elements()) * channels()); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<uint32_t> index(output_pixels() * channels()); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| std::vector<uint32_t> index_ref(output_pixels() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float max_value = indirect_input[x * step()][c + input_offset()]; |
| uint32_t max_index = 0; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float value = indirect_input[x * step() + p][c + input_offset()]; |
| if (value > max_value) { |
| max_value = value; |
| max_index = p; |
| } |
| } |
| output_ref[x * channels() + c] = max_value; |
| index_ref[x * channels() + c] = max_index; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| argmaxpool(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), output.data(), index.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float)); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_EQ( |
| indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()], |
| indirect_input[x * step() + index[x * channels() + c]][c + input_offset()]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_EQ(index_ref[x * channels() + c], index[x * channels() + c]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_argmaxpool_multipass_ukernel_function argmaxpool, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| ((output_pixels() - 1) * step() + pooling_elements()) * channels()); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<uint32_t> index(output_pixels() * channels()); |
| std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> index_buffer( |
| channels() + XNN_EXTRA_BYTES / sizeof(uint32_t)); |
| std::vector<float, AlignedAllocator<float, 64>> output_buffer( |
| channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| std::vector<uint32_t> index_ref(output_pixels() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float max_value = indirect_input[x * step()][c + input_offset()]; |
| uint32_t max_index = 0; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float value = indirect_input[x * step() + p][c + input_offset()]; |
| if (value > max_value) { |
| max_value = value; |
| max_index = p; |
| } |
| } |
| output_ref[x * channels() + c] = max_value; |
| index_ref[x * channels() + c] = max_index; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| argmaxpool(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), |
| output_buffer.data(), index_buffer.data(), |
| output.data(), index.data(), |
| (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float)); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_EQ( |
| indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()], |
| indirect_input[x * step() + index[x * channels() + c]][c + input_offset()]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_EQ(index_ref[x * channels() + c], index[x * channels() + c]) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t output_pixels_{1}; |
| size_t pooling_elements_{1}; |
| size_t channels_{1}; |
| size_t input_offset_{0}; |
| size_t step_{1}; |
| size_t primary_pooling_tile_{1}; |
| size_t incremental_pooling_tile_{1}; |
| size_t output_stride_{0}; |
| size_t iterations_{3}; |
| }; |