| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| |
| class ClampOperatorTester { |
| public: |
| inline ClampOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline ClampOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->input_stride_ >= this->channels_); |
| return this->input_stride_; |
| } |
| } |
| |
| inline ClampOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->output_stride_ >= this->channels_); |
| return this->output_stride_; |
| } |
| } |
| |
| inline ClampOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline ClampOperatorTester& qmin(int16_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline int16_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline ClampOperatorTester& qmax(int16_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline int16_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline ClampOperatorTester& relu_activation(bool relu_activation) { |
| this->relu_activation_ = relu_activation; |
| return *this; |
| } |
| |
| inline bool relu_activation() const { |
| return this->relu_activation_; |
| } |
| |
| inline ClampOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestF16() const { |
| ASSERT_LT(qmin(), qmax()); |
| ASSERT_FALSE(relu_activation()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist( |
| std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max()); |
| |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results. |
| const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(float(qmin()))); |
| const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(float(qmax()))); |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]); |
| const float y = relu_activation() ? std::max(x, 0.f) : std::min(std::max(x, output_min), output_max); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Clamp operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t clamp_op = nullptr; |
| |
| const xnn_status status = xnn_create_clamp_nc_f16( |
| channels(), input_stride(), output_stride(), |
| output_min, output_max, |
| 0, &clamp_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, clamp_op); |
| |
| // Smart pointer to automatically delete clamp_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_clamp_nc_f16( |
| clamp_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(clamp_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f)) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", min " << output_min << ", max " << output_max; |
| } |
| } |
| } |
| } |
| |
| void TestF32() const { |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist( |
| std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max()); |
| |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<float> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input[i * input_stride() + c]; |
| const float y = relu_activation() ? std::max(x, 0.f) : |
| std::min(std::max(x, float(qmin())), float(qmax())); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Clamp operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t clamp_op = nullptr; |
| |
| const float output_min = relu_activation() ? 0.0f : float(qmin()); |
| const float output_max = relu_activation() ? std::numeric_limits<float>::infinity() : float(qmax()); |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_clamp_nc_f32( |
| channels(), input_stride(), output_stride(), |
| output_min, output_max, |
| 0, &clamp_op)); |
| ASSERT_NE(nullptr, clamp_op); |
| |
| // Smart pointer to automatically delete clamp_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_clamp_nc_f32( |
| clamp_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(clamp_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(output[i * output_stride() + c], output_max) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_GE(output[i * output_stride() + c], output_min) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c]) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", min " << output_min << ", max " << output_max; |
| } |
| } |
| } |
| } |
| |
| void TestS8() const { |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<int8_t> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const int8_t x = input[i * input_stride() + c]; |
| const int8_t y = std::min(std::max(x, int8_t(qmin())), int8_t(qmax())); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Clamp operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t clamp_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_clamp_nc_s8( |
| channels(), input_stride(), output_stride(), |
| int8_t(qmin()), int8_t(qmax()), |
| 0, &clamp_op)); |
| ASSERT_NE(nullptr, clamp_op); |
| |
| // Smart pointer to automatically delete clamp_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_clamp_nc_s8( |
| clamp_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(clamp_op, nullptr /* thread pool */)); |
| |
| // Verify results . |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(int16_t(output[i * output_stride() + c]), qmax()) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_GE(int16_t(output[i * output_stride() + c]), qmin()) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_EQ(int16_t(output[i * output_stride() + c]), int16_t(output_ref[i * channels() + c])) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", min " << qmin() << ", max " << qmax(); |
| } |
| } |
| } |
| } |
| |
| void TestU8() const { |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + |
| (batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<uint8_t> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const uint8_t x = input[i * input_stride() + c]; |
| const uint8_t y = std::min(std::max(x, uint8_t(qmin())), uint8_t(qmax())); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Clamp operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t clamp_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_clamp_nc_u8( |
| channels(), input_stride(), output_stride(), |
| uint8_t(qmin()), uint8_t(qmax()), |
| 0, &clamp_op)); |
| ASSERT_NE(nullptr, clamp_op); |
| |
| // Smart pointer to automatically delete clamp_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_clamp_nc_u8( |
| clamp_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(clamp_op, nullptr /* thread pool */)); |
| |
| // Verify results . |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(int16_t(output[i * output_stride() + c]), qmax()) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_GE(int16_t(output[i * output_stride() + c]), qmin()) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| ASSERT_EQ(int16_t(output[i * output_stride() + c]), int16_t(output_ref[i * channels() + c])) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", min " << qmin() << ", max " << qmax(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| int16_t qmin_{std::numeric_limits<int16_t>::min()}; |
| int16_t qmax_{std::numeric_limits<int16_t>::max()}; |
| bool relu_activation_{false}; |
| size_t iterations_{15}; |
| }; |