blob: fff19e0b9ec81d90214d92d6c9d08893317c0613 [file] [log] [blame] [edit]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <limits>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
class ClampOperatorTester {
public:
inline ClampOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline ClampOperatorTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return this->channels_;
} else {
assert(this->input_stride_ >= this->channels_);
return this->input_stride_;
}
}
inline ClampOperatorTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return this->channels_;
} else {
assert(this->output_stride_ >= this->channels_);
return this->output_stride_;
}
}
inline ClampOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline ClampOperatorTester& qmin(int16_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline int16_t qmin() const {
return this->qmin_;
}
inline ClampOperatorTester& qmax(int16_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline int16_t qmax() const {
return this->qmax_;
}
inline ClampOperatorTester& relu_activation(bool relu_activation) {
this->relu_activation_ = relu_activation;
return *this;
}
inline bool relu_activation() const {
return this->relu_activation_;
}
inline ClampOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestF16() const {
ASSERT_LT(qmin(), qmax());
ASSERT_FALSE(relu_activation());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(
std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max());
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results.
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(float(qmin())));
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(float(qmax())));
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
const float y = relu_activation() ? std::max(x, 0.f) : std::min(std::max(x, output_min), output_max);
output_ref[i * channels() + c] = y;
}
}
// Create, setup, run, and destroy Clamp operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t clamp_op = nullptr;
const xnn_status status = xnn_create_clamp_nc_f16(
channels(), input_stride(), output_stride(),
output_min, output_max,
0, &clamp_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, clamp_op);
// Smart pointer to automatically delete clamp_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_clamp_nc_f16(
clamp_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(clamp_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max)
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min)
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f))
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels()
<< ", min " << output_min << ", max " << output_max;
}
}
}
}
void TestF32() const {
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(
std::numeric_limits<int16_t>::min(), std::numeric_limits<int16_t>::max());
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() - 1) * input_stride() + channels());
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float x = input[i * input_stride() + c];
const float y = relu_activation() ? std::max(x, 0.f) :
std::min(std::max(x, float(qmin())), float(qmax()));
output_ref[i * channels() + c] = y;
}
}
// Create, setup, run, and destroy Clamp operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t clamp_op = nullptr;
const float output_min = relu_activation() ? 0.0f : float(qmin());
const float output_max = relu_activation() ? std::numeric_limits<float>::infinity() : float(qmax());
ASSERT_EQ(xnn_status_success,
xnn_create_clamp_nc_f32(
channels(), input_stride(), output_stride(),
output_min, output_max,
0, &clamp_op));
ASSERT_NE(nullptr, clamp_op);
// Smart pointer to automatically delete clamp_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_clamp_nc_f32(
clamp_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(clamp_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(output[i * output_stride() + c], output_max)
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_GE(output[i * output_stride() + c], output_min)
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels()
<< ", min " << output_min << ", max " << output_max;
}
}
}
}
void TestS8() const {
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<int8_t> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xA5));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const int8_t x = input[i * input_stride() + c];
const int8_t y = std::min(std::max(x, int8_t(qmin())), int8_t(qmax()));
output_ref[i * channels() + c] = y;
}
}
// Create, setup, run, and destroy Clamp operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t clamp_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_clamp_nc_s8(
channels(), input_stride(), output_stride(),
int8_t(qmin()), int8_t(qmax()),
0, &clamp_op));
ASSERT_NE(nullptr, clamp_op);
// Smart pointer to automatically delete clamp_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_clamp_nc_s8(
clamp_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(clamp_op, nullptr /* thread pool */));
// Verify results .
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(int16_t(output[i * output_stride() + c]), qmax())
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_GE(int16_t(output[i * output_stride() + c]), qmin())
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_EQ(int16_t(output[i * output_stride() + c]), int16_t(output_ref[i * channels() + c]))
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels()
<< ", min " << qmin() << ", max " << qmax();
}
}
}
}
void TestU8() const {
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<uint8_t> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::fill(output.begin(), output.end(), UINT8_C(0xA5));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const uint8_t x = input[i * input_stride() + c];
const uint8_t y = std::min(std::max(x, uint8_t(qmin())), uint8_t(qmax()));
output_ref[i * channels() + c] = y;
}
}
// Create, setup, run, and destroy Clamp operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t clamp_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_clamp_nc_u8(
channels(), input_stride(), output_stride(),
uint8_t(qmin()), uint8_t(qmax()),
0, &clamp_op));
ASSERT_NE(nullptr, clamp_op);
// Smart pointer to automatically delete clamp_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_clamp_op(clamp_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_clamp_nc_u8(
clamp_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(clamp_op, nullptr /* thread pool */));
// Verify results .
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(int16_t(output[i * output_stride() + c]), qmax())
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_GE(int16_t(output[i * output_stride() + c]), qmin())
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
ASSERT_EQ(int16_t(output[i * output_stride() + c]), int16_t(output_ref[i * channels() + c]))
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels()
<< ", min " << qmin() << ", max " << qmax();
}
}
}
}
private:
size_t batch_size_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
int16_t qmin_{std::numeric_limits<int16_t>::min()};
int16_t qmax_{std::numeric_limits<int16_t>::max()};
bool relu_activation_{false};
size_t iterations_{15};
};