blob: 527e7d0402c12b94b2aded058f406865898aad15 [file] [log] [blame] [edit]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
class ConvertOperatorTester {
public:
inline ConvertOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline ConvertOperatorTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return this->channels_;
} else {
assert(this->input_stride_ >= this->channels_);
return this->input_stride_;
}
}
inline ConvertOperatorTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return this->channels_;
} else {
assert(this->output_stride_ >= this->channels_);
return this->output_stride_;
}
}
inline ConvertOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline ConvertOperatorTester& scale(float scale) {
assert(scale >= 0.0f);
assert(std::isnormal(scale));
this->scale_ = scale;
return *this;
}
inline float scale() const {
return this->scale_;
}
inline ConvertOperatorTester& zero_point(int16_t zero_point) {
this->zero_point_ = zero_point;
return *this;
}
inline int16_t zero_point() const {
return this->zero_point_;
}
inline ConvertOperatorTester& qmin(int16_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline int16_t qmin() const {
return this->qmin_;
}
inline ConvertOperatorTester& qmax(int16_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline int16_t qmax() const {
return this->qmax_;
}
inline ConvertOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestF16toF32() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
output_ref[i * channels() + c] = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_f16_f32(
channels(), input_stride(), output_stride(),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_f16_f32(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
void TestF32toF16() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() - 1) * input_stride() + channels());
std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<uint16_t> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
output_ref[i * channels() + c] = fp16_ieee_from_fp32_value(input[i * input_stride() + c]);
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_f32_f16(
channels(), input_stride(), output_stride(),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_f32_f16(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
void TestF32toQS8() const {
ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
ASSERT_LT(qmin(), qmax());
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() - 1) * input_stride() + channels());
std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<int8_t> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xA5));
// Compute reference results.
const float inv_scale = 1.0f / scale();
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
float scaled_input = input[i * input_stride() + c] * inv_scale;
scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
output_ref[i * channels() + c] = int8_t(std::lrintf(scaled_input) + long(zero_point()));
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_f32_qs8(
channels(), input_stride(), output_stride(),
scale(), int8_t(zero_point()), int8_t(qmin()), int8_t(qmax()),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_f32_qs8(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c]))
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
void TestF32toQU8() const {
ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
ASSERT_LT(qmin(), qmax());
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() - 1) * input_stride() + channels());
std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<uint8_t> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), UINT8_C(0xA5));
// Compute reference results.
const float inv_scale = 1.0f / scale();
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
float scaled_input = input[i * input_stride() + c] * inv_scale;
scaled_input = std::min<float>(scaled_input, float(qmax() - zero_point()));
scaled_input = std::max<float>(scaled_input, float(qmin() - zero_point()));
output_ref[i * channels() + c] = uint8_t(std::lrintf(scaled_input) + long(zero_point()));
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_f32_qu8(
channels(), input_stride(), output_stride(),
scale(), uint8_t(zero_point()), uint8_t(qmin()), uint8_t(qmax()),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_f32_qu8(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c]))
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
void TestQS8toF32() const {
ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
output_ref[i * channels() + c] = float(input[i * input_stride() + c] - zero_point()) * scale();
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_qs8_f32(
channels(), input_stride(), output_stride(),
scale(), int8_t(zero_point()),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_qs8_f32(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
void TestQU8toF32() const {
ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min());
ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max());
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
(batch_size() - 1) * input_stride() + channels());
std::vector<float> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
output_ref[i * channels() + c] = float(input[i * input_stride() + c] - zero_point()) * scale();
}
}
// Create, setup, run, and destroy Convert operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t convert_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_convert_nc_qu8_f32(
channels(), input_stride(), output_stride(),
scale(), uint8_t(zero_point()),
0, &convert_op));
ASSERT_NE(nullptr, convert_op);
// Smart pointer to automatically delete convert op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_convert_op(convert_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_convert_nc_qu8_f32(
convert_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(convert_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
<< "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
}
private:
size_t batch_size_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
float scale_{150.0f};
int16_t zero_point_{1};
int16_t qmin_{std::numeric_limits<int16_t>::min()};
int16_t qmax_{std::numeric_limits<int16_t>::max()};
size_t iterations_{15};
};