blob: 31f7816563ce483db320317478245aaa20d95e87 [file] [log] [blame] [edit]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <limits>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/cache.h>
namespace {
template<class T>
inline T doz(T a, T b) {
return a > b ? a - b : T(0);
}
} // namespace
class DeconvolutionOperatorTester {
public:
enum class WeightsType {
Default,
FP32,
};
inline DeconvolutionOperatorTester& padding(uint32_t padding) {
this->padding_top_ = padding;
this->padding_right_ = padding;
this->padding_bottom_ = padding;
this->padding_left_ = padding;
return *this;
}
inline DeconvolutionOperatorTester& padding_height(uint32_t padding_height) {
this->padding_top_ = padding_height;
this->padding_bottom_ = padding_height;
return *this;
}
inline uint32_t padding_height() const {
return this->padding_top_ + this->padding_bottom_;
}
inline DeconvolutionOperatorTester& padding_width(uint32_t padding_width) {
this->padding_right_ = padding_width;
this->padding_left_ = padding_width;
return *this;
}
inline uint32_t padding_width() const {
return this->padding_left_ + this->padding_right_;
}
inline DeconvolutionOperatorTester& padding_top(uint32_t padding_top) {
this->padding_top_ = padding_top;
return *this;
}
inline uint32_t padding_top() const { return this->padding_top_; }
inline DeconvolutionOperatorTester& padding_right(uint32_t padding_right) {
this->padding_right_ = padding_right;
return *this;
}
inline uint32_t padding_right() const { return this->padding_right_; }
inline DeconvolutionOperatorTester& padding_bottom(uint32_t padding_bottom) {
this->padding_bottom_ = padding_bottom;
return *this;
}
inline uint32_t padding_bottom() const { return this->padding_bottom_; }
inline DeconvolutionOperatorTester& padding_left(uint32_t padding_left) {
this->padding_left_ = padding_left;
return *this;
}
inline uint32_t padding_left() const { return this->padding_left_; }
inline DeconvolutionOperatorTester& adjustment_height(uint32_t adjustment_height) {
this->adjustment_height_ = adjustment_height;
return *this;
}
inline uint32_t adjustment_height() const {
return this->adjustment_height_;
}
inline DeconvolutionOperatorTester& adjustment_width(uint32_t adjustment_width) {
this->adjustment_width_ = adjustment_width;
return *this;
}
inline uint32_t adjustment_width() const {
return this->adjustment_width_;
}
inline DeconvolutionOperatorTester& input_size(uint32_t input_height, uint32_t input_width) {
assert(input_height >= 1);
assert(input_width >= 1);
this->input_height_ = input_height;
this->input_width_ = input_width;
return *this;
}
inline DeconvolutionOperatorTester& input_height(uint32_t input_height) {
assert(input_height >= 1);
this->input_height_ = input_height;
return *this;
}
inline uint32_t input_height() const {
return this->input_height_;
}
inline DeconvolutionOperatorTester& input_width(uint32_t input_width) {
assert(input_width >= 1);
this->input_width_ = input_width;
return *this;
}
inline uint32_t input_width() const {
return this->input_width_;
}
inline DeconvolutionOperatorTester& groups(uint32_t groups) {
assert(groups >= 1);
this->groups_ = groups;
return *this;
}
inline uint32_t groups() const {
return this->groups_;
}
inline DeconvolutionOperatorTester& group_input_channels(size_t group_input_channels) {
assert(group_input_channels >= 1);
this->group_input_channels_ = group_input_channels;
return *this;
}
inline size_t group_input_channels() const {
return this->group_input_channels_;
}
inline DeconvolutionOperatorTester& group_output_channels(size_t group_output_channels) {
assert(group_output_channels >= 1);
this->group_output_channels_ = group_output_channels;
return *this;
}
inline size_t group_output_channels() const {
return this->group_output_channels_;
}
inline DeconvolutionOperatorTester& batch_size(size_t batch_size) {
assert(batch_size >= 1);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline DeconvolutionOperatorTester& kernel_size(uint32_t kernel_size) {
assert(kernel_size >= 1);
this->kernel_height_ = kernel_size;
this->kernel_width_ = kernel_size;
return *this;
}
inline DeconvolutionOperatorTester& kernel_size(uint32_t kernel_height, uint32_t kernel_width) {
assert(kernel_height >= 1);
assert(kernel_width >= 1);
this->kernel_height_ = kernel_height;
this->kernel_width_ = kernel_width;
return *this;
}
inline DeconvolutionOperatorTester& kernel_height(uint32_t kernel_height) {
assert(kernel_height >= 1);
this->kernel_height_ = kernel_height;
return *this;
}
inline uint32_t kernel_height() const {
return this->kernel_height_;
}
inline DeconvolutionOperatorTester& kernel_width(uint32_t kernel_width) {
assert(kernel_width >= 1);
this->kernel_width_ = kernel_width;
return *this;
}
inline uint32_t kernel_width() const {
return this->kernel_width_;
}
inline DeconvolutionOperatorTester& dilation(uint32_t dilation) {
assert(dilation >= 1);
this->dilation_height_ = dilation;
this->dilation_width_ = dilation;
return *this;
}
inline DeconvolutionOperatorTester& dilation(uint32_t dilation_height, uint32_t dilation_width) {
assert(dilation_height >= 1);
assert(dilation_width >= 1);
this->dilation_height_ = dilation_height;
this->dilation_width_ = dilation_width;
return *this;
}
inline DeconvolutionOperatorTester& dilation_height(uint32_t dilation_height) {
assert(dilation_height >= 1);
this->dilation_height_ = dilation_height;
return *this;
}
inline uint32_t dilation_height() const {
return this->dilation_height_;
}
inline DeconvolutionOperatorTester& dilation_width(uint32_t dilation_width) {
assert(dilation_width >= 1);
this->dilation_width_ = dilation_width;
return *this;
}
inline uint32_t dilation_width() const {
return this->dilation_width_;
}
inline DeconvolutionOperatorTester& stride(uint32_t stride) {
assert(stride >= 1);
this->stride_height_ = stride;
this->stride_width_ = stride;
return *this;
}
inline DeconvolutionOperatorTester& stride(uint32_t stride_height, uint32_t stride_width) {
assert(stride_height >= 1);
assert(stride_width >= 1);
this->stride_height_ = stride_height;
this->stride_width_ = stride_width;
return *this;
}
inline DeconvolutionOperatorTester& stride_height(uint32_t stride_height) {
assert(stride_height >= 1);
this->stride_height_ = stride_height;
return *this;
}
inline uint32_t stride_height() const {
return this->stride_height_;
}
inline DeconvolutionOperatorTester& stride_width(uint32_t stride_width) {
assert(stride_width >= 1);
this->stride_width_ = stride_width;
return *this;
}
inline uint32_t stride_width() const {
return this->stride_width_;
}
inline DeconvolutionOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
assert(input_pixel_stride >= 1);
this->input_pixel_stride_ = input_pixel_stride;
return *this;
}
inline size_t input_pixel_stride() const {
if (this->input_pixel_stride_ == 0) {
return group_input_channels() * groups();
} else {
assert(this->input_pixel_stride_ >= group_input_channels() * groups());
return this->input_pixel_stride_;
}
}
inline DeconvolutionOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
assert(output_pixel_stride >= 1);
this->output_pixel_stride_ = output_pixel_stride;
return *this;
}
inline size_t output_pixel_stride() const {
if (this->output_pixel_stride_ == 0) {
return group_output_channels() * groups();
} else {
assert(this->output_pixel_stride_ >= group_output_channels() * groups());
return this->output_pixel_stride_;
}
}
inline uint32_t dilated_kernel_height() const {
return (kernel_height() - 1) * dilation_height() + 1;
}
inline uint32_t dilated_kernel_width() const {
return (kernel_width() - 1) * dilation_width() + 1;
}
inline size_t output_height() const {
return stride_height() * (input_height() - 1) + adjustment_height() + dilated_kernel_height() - padding_height();
}
inline size_t output_width() const {
return stride_width() * (input_width() - 1) + adjustment_width() + dilated_kernel_width() - padding_width();
}
inline DeconvolutionOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
assert(next_input_height >= 1);
assert(next_input_width >= 1);
this->next_input_height_ = next_input_height;
this->next_input_width_ = next_input_width;
return *this;
}
inline DeconvolutionOperatorTester& next_input_height(uint32_t next_input_height) {
assert(next_input_height >= 1);
this->next_input_height_ = next_input_height;
return *this;
}
inline uint32_t next_input_height() const {
if (this->next_input_height_ == 0) {
return input_height();
} else {
return this->next_input_height_;
}
}
inline DeconvolutionOperatorTester& next_input_width(uint32_t next_input_width) {
assert(next_input_width >= 1);
this->next_input_width_ = next_input_width;
return *this;
}
inline uint32_t next_input_width() const {
if (this->next_input_width_ == 0) {
return input_width();
} else {
return this->next_input_width_;
}
}
inline size_t next_output_height() const {
return stride_height() * (next_input_height() - 1) + adjustment_height() + dilated_kernel_height() - padding_height();
}
inline size_t next_output_width() const {
return stride_width() * (next_input_width() - 1) + adjustment_width() + dilated_kernel_width() - padding_width();
}
inline DeconvolutionOperatorTester& next_batch_size(size_t next_batch_size) {
assert(next_batch_size >= 1);
this->next_batch_size_ = next_batch_size;
return *this;
}
inline size_t next_batch_size() const {
if (this->next_batch_size_ == 0) {
return batch_size();
} else {
return this->next_batch_size_;
}
}
inline DeconvolutionOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline DeconvolutionOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline DeconvolutionOperatorTester& has_bias(bool has_bias) {
this->has_bias_ = has_bias;
return *this;
}
inline bool has_bias() const {
return this->has_bias_;
}
inline DeconvolutionOperatorTester& weights_type(WeightsType weights_type) {
this->weights_type_ = weights_type;
return *this;
}
inline WeightsType weights_type() const {
return this->weights_type_;
}
inline DeconvolutionOperatorTester& use_weights_cache(bool use_weights_cache) {
this->use_weights_cache_ = use_weights_cache;
return *this;
}
inline bool use_weights_cache() const {
return this->use_weights_cache_;
}
inline DeconvolutionOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestQS8() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i32dist(-10000, 10000);
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::uniform_int_distribution<int32_t> w8dist(
-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max());
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels());
std::vector<int8_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<int32_t> bias(groups() * group_output_channels());
std::vector<int8_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels());
std::vector<int32_t> accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<double> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
const int8_t input_zero_point = 1;
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xA5));
// Compute reference results, without renormalization.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(accumulators.begin(), accumulators.end(), 0);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]);
}
}
}
}
}
}
}
}
}
}
// Compute renormalization parameters.
const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
const int8_t output_zero_point = int8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
// Renormalize reference results.
std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point);
});
// Create, setup, run, and destroy Deconvolution operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_qs8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), input_zero_point,
1.0f /* input scale */, 1.0f /* kernel scale */, kernel.data(),
has_bias() ? bias.data() : nullptr, output_zero_point,
output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
/*flags=*/0, &caches, &deconvolution_op));
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qs8(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
VerifyQS8(output, output_ref, output_zero_point);
if (use_weights_cache()) {
xnn_operator_t deconvolution_op2 = nullptr;
size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_qs8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), input_zero_point,
1.0f /* input scale */, 1.0f /* kernel scale */, kernel.data(),
has_bias() ? bias.data() : nullptr, output_zero_point,
output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
/*flags=*/0, &caches, &deconvolution_op2));
// Smart pointer to automatically delete deconvolution_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op2, xnn_delete_operator);
std::vector<int8_t> output2(output.size(), INT8_C(0xA5));
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qs8(
deconvolution_op2,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output2.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op2, nullptr /* thread pool */));
VerifyWeightsCache(&weights_cache, old_weights_cache_size);
VerifyQS8(output2, output_ref, output_zero_point);
xnn_release_weights_cache(&weights_cache);
}
}
}
void VerifyQS8(const std::vector<int8_t> &output,
const std::vector<double> &output_ref,
int8_t output_zero_point) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
void VerifyWeightsCache(xnn_weights_cache* weights_cache, size_t old_size) const {
ASSERT_EQ(weights_cache->cache.hits, 1);
// Ensure that we did not write more weights to the cache because it was a cache hit.
ASSERT_EQ(old_size, weights_cache->cache.weights.size);
};
void TestQU8() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i32dist(-10000, 10000);
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels());
std::vector<uint8_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<int32_t> bias(groups() * group_output_channels());
std::vector<uint8_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels());
std::vector<int32_t> accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<double> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
const uint8_t input_zero_point = 127;
const uint8_t kernel_zero_point = 127;
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
std::fill(output.begin(), output.end(), UINT8_C(0xA5));
// Compute reference results, without renormalization.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(accumulators.begin(), accumulators.end(), 0);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
(int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point));
}
}
}
}
}
}
}
}
}
}
// Compute renormalization parameters.
const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
const uint8_t output_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
// Renormalize reference results.
std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
});
// Create, setup, run, and destroy Deconvolution operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_qu8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), input_zero_point,
1.0f /* input scale */, kernel_zero_point,
1.0f /* kernel scale */, kernel.data(),
has_bias() ? bias.data() : nullptr, output_zero_point,
output_scale, qmin(), qmax(),
/*flags=*/0, &caches, &deconvolution_op));
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qu8(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results.
VerifyQU8(output, output_ref, output_zero_point);
if (use_weights_cache()) {
xnn_operator_t deconvolution_op2 = nullptr;
size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_qu8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), input_zero_point,
1.0f /* input scale */, kernel_zero_point,
1.0f /* kernel scale */, kernel.data(),
has_bias() ? bias.data() : nullptr, output_zero_point,
output_scale, qmin(), qmax(),
/*flags=*/0, &caches, &deconvolution_op2));
// Smart pointer to automatically delete deconvolution_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op2, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qu8(
deconvolution_op2,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op2, nullptr /* thread pool */));
VerifyWeightsCache(&weights_cache, old_weights_cache_size);
VerifyQU8(output, output_ref, output_zero_point);
xnn_release_weights_cache(&weights_cache);
}
}
}
void VerifyQU8(const std::vector<uint8_t> &output,
const std::vector<double> &output_ref,
uint8_t output_zero_point) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
void TestF16() const {
switch (weights_type()) {
case WeightsType::Default:
break;
case WeightsType::FP32:
break;
default:
GTEST_FAIL() << "unexpected weights type";
}
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels());
std::vector<uint16_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<float> kernel_as_float(kernel.size());
std::vector<uint16_t> bias(groups() * group_output_channels());
std::vector<float> bias_as_float(bias.size());
std::vector<uint16_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels());
std::vector<float> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(kernel.begin(), kernel.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::transform(kernel.cbegin(), kernel.cend(), kernel_as_float.begin(), fp16_ieee_to_fp32_value);
std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::transform(bias.cbegin(), bias.cend(), bias_as_float.begin(), fp16_ieee_to_fp32_value);
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias_as_float[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) *
kernel_as_float[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic];
}
}
}
}
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min));
output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max));
if (accumulated_range == 0.0f) {
output_min = -std::numeric_limits<float>::infinity();
output_max = +std::numeric_limits<float>::infinity();
}
if (qmin() == std::numeric_limits<uint8_t>::min()) {
output_min = -std::numeric_limits<float>::infinity();
}
if (qmax() == std::numeric_limits<uint8_t>::max()) {
output_max = +std::numeric_limits<float>::infinity();
}
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Deconvolution operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
const void* kernel_data = kernel.data();
const void* bias_data = bias.data();
if (weights_type() == WeightsType::FP32) {
kernel_data = kernel_as_float.data();
bias_data = bias_as_float.data();
}
uint32_t flags = 0;
if (weights_type() == WeightsType::FP32) {
flags |= XNN_FLAG_FP32_STATIC_WEIGHTS;
}
const xnn_status status = xnn_create_deconvolution2d_nhwc_f16(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
kernel_data, has_bias() ? bias_data : nullptr,
output_min, output_max,
flags, &caches, &deconvolution_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, deconvolution_op);
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f16(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
VerifyF16(output, output_ref, output_max, output_min);
if (use_weights_cache()) {
xnn_operator_t deconvolution_op2 = nullptr;
size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(xnn_status_success,
xnn_create_deconvolution2d_nhwc_f16(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
kernel_data, has_bias() ? bias_data : nullptr,
output_min, output_max,
flags, &caches, &deconvolution_op2));
ASSERT_NE(nullptr, deconvolution_op2);
// Smart pointer to automatically delete deconvolution_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op2, xnn_delete_operator);
std::vector<uint16_t> output2(output.size(), UINT16_C(0x7E00) /* NaN */);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f16(
deconvolution_op2,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output2.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op2, nullptr /* thread pool */));
VerifyWeightsCache(&weights_cache, old_weights_cache_size);
VerifyF16(output2, output_ref, output_max, output_min);
xnn_release_weights_cache(&weights_cache);
}
}
}
void VerifyF16(const std::vector<uint16_t> &output,
const std::vector<float> &output_ref,
float output_max,
float output_min) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]),
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
1.0e-2f * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
void TestF32() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels());
std::vector<float> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<float> bias(groups() * group_output_channels());
std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels());
std::vector<float> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results, without clamping.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] *
kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic];
}
}
}
}
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() :
accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() :
accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Deconvolution operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_f32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), kernel.data(),
has_bias() ? bias.data() : nullptr, output_min, output_max,
/*flags=*/0, &caches, &deconvolution_op));
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
VerifyF32(output, output_ref, output_max, output_min);
if (use_weights_cache()) {
xnn_operator_t deconvolution_op2 = nullptr;
size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_f32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), kernel.data(),
has_bias() ? bias.data() : nullptr, output_min, output_max,
/*flags=*/0, &caches, &deconvolution_op2));
// Smart pointer to automatically delete deconvolution_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op2, xnn_delete_operator);
std::vector<float> output2(output.size(), nanf(""));
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_op2,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output2.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op2, nullptr /* thread pool */));
VerifyWeightsCache(&weights_cache, old_weights_cache_size);
VerifyF32(output2, output_ref, output_max, output_min);
xnn_release_weights_cache(&weights_cache);
}
}
}
// A variation of TestF32 that stresses the weights cache. All the operator creation needs to happen before
// finalization and setup.
void StressWeightsCacheTestF32() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
void* old_weights_cache_start = weights_cache.cache.weights.start;
size_t old_weights_cache_size = weights_cache.cache.weights.size;
std::vector<xnn_operator_t> operators;
operators.reserve(iterations());
std::vector<std::vector<float>> inputs;
inputs.reserve(iterations());
std::vector<std::vector<float>> outputs;
outputs.reserve(iterations());
std::vector<std::vector<float>> output_refs;
output_refs.reserve(iterations());
std::vector<float> output_mins;
output_mins.reserve(iterations());
std::vector<float> output_maxs;
output_maxs.reserve(iterations());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels());
std::vector<float> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<float> bias(groups() * group_output_channels());
std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels());
std::vector<float> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results, without clamping.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] *
kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic];
}
}
}
}
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() :
accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() :
accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
output_mins.push_back(output_min);
output_maxs.push_back(output_max);
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Deconvolution operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
ASSERT_EQ(
xnn_status_success,
xnn_create_deconvolution2d_nhwc_f32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(), stride_height(), stride_width(),
dilation_height(), dilation_width(), groups(),
group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(), kernel.data(),
has_bias() ? bias.data() : nullptr, output_min, output_max,
/*flags=*/0, &caches, &deconvolution_op));
operators.push_back(std::move(deconvolution_op));
inputs.push_back(std::move(input));
outputs.push_back(std::move(output));
output_refs.push_back(std::move(output_ref));
}
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
xnn_operator_t deconvolution_op = operators[iteration];
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
inputs[iteration].data(), outputs[iteration].data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
VerifyF32(outputs[iteration],
output_refs[iteration],
output_maxs[iteration],
output_mins[iteration]);
xnn_delete_operator(deconvolution_op);
}
// Check that the weights cache grew and moved. If these assertion fails,
// might have to increase the number of test iterations.
ASSERT_NE(old_weights_cache_start, weights_cache.cache.weights.start);
ASSERT_LT(old_weights_cache_size, weights_cache.cache.weights.size);
// Since the weights are randomized, it is very unlikely to have any hits.
ASSERT_EQ(iterations(), weights_cache.cache.misses);
ASSERT_EQ(0, weights_cache.cache.hits);
ASSERT_EQ(iterations(), weights_cache.cache.num_entries);
xnn_release_weights_cache(&weights_cache);
}
void VerifyF32(const std::vector<float> &output,
const std::vector<float> &output_ref,
float output_max,
float output_min) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c],
1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
void TestSetupQS8() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i32dist(-10000, 10000);
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::uniform_int_distribution<int32_t> w8dist(
-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max());
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + std::max(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()));
std::vector<int8_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<int32_t> bias(groups() * group_output_channels());
std::vector<int8_t> output(std::max(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()));
std::vector<int32_t> accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<double> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<int32_t> next_accumulators(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
std::vector<double> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
const int8_t input_zero_point = 127;
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xA5));
// Compute reference results, without renormalization.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(accumulators.begin(), accumulators.end(), 0);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]);
}
}
}
}
}
}
}
}
}
}
// Compute renormalization parameters.
const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
const int8_t output_zero_point = int8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
// Renormalize reference results.
std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point);
});
// Create, setup, and run Deconvolution operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_deconvolution2d_nhwc_qs8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(),
stride_height(), stride_width(),
dilation_height(), dilation_width(),
groups(), group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
input_zero_point, 1.0f /* input scale */,
1.0f /* kernel scale */,
kernel.data(), has_bias() ? bias.data() : nullptr,
output_zero_point, output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
0, NULL, &deconvolution_op));
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qs8(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xA5));
// Compute reference results for the second run, including renormalization.
if (has_bias()) {
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(next_accumulators.begin(), next_accumulators.end(), 0);
}
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < next_input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < next_input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]);
}
}
}
}
}
}
}
}
}
}
std::transform(next_accumulators.cbegin(), next_accumulators.cend(), next_output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point);
});
// Setup and run Deconvolution operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qs8(
deconvolution_op,
next_batch_size(), next_input_height(), next_input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
}
void TestSetupQU8() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i32dist(-10000, 10000);
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()));
std::vector<uint8_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<int32_t> bias(groups() * group_output_channels());
std::vector<uint8_t> output(std::max(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()));
std::vector<int32_t> accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<double> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<int32_t> next_accumulators(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
std::vector<double> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
const uint8_t input_zero_point = 127;
const uint8_t kernel_zero_point = 127;
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
std::fill(output.begin(), output.end(), UINT8_C(0xA5));
// Compute reference results, without renormalization.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(accumulators.begin(), accumulators.end(), 0);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
(int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point));
}
}
}
}
}
}
}
}
}
}
// Compute renormalization parameters.
const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
const uint8_t output_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
// Renormalize reference results.
std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
});
// Create, setup, and run Deconvolution operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_deconvolution2d_nhwc_qu8(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(),
stride_height(), stride_width(),
dilation_height(), dilation_width(),
groups(), group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
input_zero_point, 1.0f /* input scale */,
kernel_zero_point, 1.0f /* kernel scale */,
kernel.data(), has_bias() ? bias.data() : nullptr,
output_zero_point, output_scale, qmin(), qmax(),
0, NULL, &deconvolution_op));
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qu8(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::fill(output.begin(), output.end(), 0xA5);
// Compute reference results for the second run, including renormalization.
if (has_bias()) {
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(next_accumulators.begin(), next_accumulators.end(), 0);
}
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < next_input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < next_input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
(int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) *
(int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point));
}
}
}
}
}
}
}
}
}
}
std::transform(next_accumulators.cbegin(), next_accumulators.cend(), next_output_ref.begin(),
[this, output_scale, output_zero_point](int32_t x) -> double {
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
});
// Setup and run Deconvolution operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_qu8(
deconvolution_op,
next_batch_size(), next_input_height(), next_input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin()))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c],
double(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point),
0.9)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
}
void TestSetupF16() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + std::max(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()));
std::vector<uint16_t> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<uint16_t> bias(groups() * group_output_channels());
std::vector<uint16_t> output(std::max(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()));
std::vector<float> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(kernel.begin(), kernel.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
fp16_ieee_to_fp32_value(bias[g * group_output_channels() + oc]);
}
}
}
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) *
fp16_ieee_to_fp32_value(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]);
}
}
}
}
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min));
output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max));
if (accumulated_range == 0.0f) {
output_min = -std::numeric_limits<float>::infinity();
output_max = +std::numeric_limits<float>::infinity();
}
if (qmin() == std::numeric_limits<uint8_t>::min()) {
output_min = -std::numeric_limits<float>::infinity();
}
if (qmax() == std::numeric_limits<uint8_t>::max()) {
output_max = +std::numeric_limits<float>::infinity();
}
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, and run Deconvolution operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
const xnn_status status = xnn_create_deconvolution2d_nhwc_f16(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(),
stride_height(), stride_width(),
dilation_height(), dilation_width(),
groups(), group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
kernel.data(), has_bias() ? bias.data() : nullptr,
output_min, output_max,
0, NULL, &deconvolution_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, deconvolution_op);
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f16(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]),
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
1.0e-2f * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results for the second run, including clamping.
if (has_bias()) {
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] =
fp16_ieee_to_fp32_value(bias[g * group_output_channels() + oc]);
}
}
}
}
}
} else {
std::fill(next_output_ref.begin(), next_output_ref.end(), 0);
}
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < next_input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < next_input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
fp16_ieee_to_fp32_value(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) *
fp16_ieee_to_fp32_value(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]);
}
}
}
}
}
}
}
}
}
}
for (float& value : next_output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Setup and run Deconvolution operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f16(
deconvolution_op,
next_batch_size(), next_input_height(), next_input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]),
next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c],
1.0e-2f * std::abs(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
}
void TestSetupF32() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + std::max(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()));
std::vector<float> kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels());
std::vector<float> bias(groups() * group_output_channels());
std::vector<float> output(std::max(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()));
std::vector<float> output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels());
std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results, without clamping.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oy = 0; oy < output_height(); oy++) {
for (size_t ox = 0; ox < output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] *
kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic];
}
}
}
}
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, and run Deconvolution operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t deconvolution_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_deconvolution2d_nhwc_f32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
kernel_height(), kernel_width(),
stride_height(), stride_width(),
dilation_height(), dilation_width(),
groups(), group_input_channels(), group_output_channels(),
input_pixel_stride(), output_pixel_stride(),
kernel.data(), has_bias() ? bias.data() : nullptr,
output_min, output_max,
0, NULL, &deconvolution_op));
// Smart pointer to automatically delete deconvolution_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_deconvolution_op(deconvolution_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_op,
batch_size(), input_height(), input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c],
1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results for the second run, including clamping.
if (has_bias()) {
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] =
bias[g * group_output_channels() + oc];
}
}
}
}
}
} else {
std::fill(next_output_ref.begin(), next_output_ref.end(), 0.0f);
}
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t oy = 0; oy < next_output_height(); oy++) {
for (size_t ox = 0; ox < next_output_width(); ox++) {
for (size_t ky = 0; ky < kernel_height(); ky++) {
const size_t y = oy + padding_top() - ky * dilation_height();
const size_t iy = y / stride_height();
if (iy * stride_height() == y && iy < next_input_height()) {
for (size_t kx = 0; kx < kernel_width(); kx++) {
const size_t x = ox + padding_left() - kx * dilation_width();
const size_t ix = x / stride_width();
if (ix * stride_width() == x && ix < next_input_width()) {
for (size_t g = 0; g < groups(); g++) {
for (size_t oc = 0; oc < group_output_channels(); oc++) {
for (size_t ic = 0; ic < group_input_channels(); ic++) {
next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] +=
input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] *
kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic];
}
}
}
}
}
}
}
}
}
}
for (float& value : next_output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Setup and run Deconvolution operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_op,
next_batch_size(), next_input_height(), next_input_width(),
adjustment_height(), adjustment_width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(deconvolution_op, nullptr /* thread pool */));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
for (size_t g = 0; g < groups(); g++) {
for (size_t c = 0; c < group_output_channels(); c++) {
ASSERT_GE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_LE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max)
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
ASSERT_NEAR(
next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c],
output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c],
1.0e-4 * std::abs(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c]))
<< "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c;
}
}
}
}
}
}
}
private:
uint32_t padding_top_{0};
uint32_t padding_right_{0};
uint32_t padding_bottom_{0};
uint32_t padding_left_{0};
size_t input_height_{1};
size_t input_width_{1};
uint32_t groups_{1};
size_t group_input_channels_{1};
size_t input_pixel_stride_{0};
size_t group_output_channels_{1};
size_t output_pixel_stride_{0};
size_t batch_size_{1};
uint32_t kernel_height_{1};
uint32_t kernel_width_{1};
uint32_t adjustment_height_{0};
uint32_t adjustment_width_{0};
uint32_t dilation_height_{1};
uint32_t dilation_width_{1};
uint32_t stride_height_{1};
uint32_t stride_width_{1};
size_t next_input_height_{0};
size_t next_input_width_{0};
size_t next_batch_size_{0};
uint8_t qmin_{0};
uint8_t qmax_{255};
bool has_bias_{true};
WeightsType weights_type_{WeightsType::Default};
bool use_weights_cache_{false};
bool stress_weights_cache_{false};
size_t iterations_{1};
};