| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| |
| class DepthToSpaceOperatorTester { |
| public: |
| inline DepthToSpaceOperatorTester& input_size(size_t input_height, size_t input_width) { |
| assert(input_height >= 1); |
| assert(input_width >= 1); |
| this->input_height_ = input_height; |
| this->input_width_ = input_width; |
| return *this; |
| } |
| |
| inline DepthToSpaceOperatorTester& input_height(size_t input_height) { |
| assert(input_height >= 1); |
| this->input_height_ = input_height; |
| return *this; |
| } |
| |
| inline size_t input_height() const { |
| return this->input_height_; |
| } |
| |
| inline DepthToSpaceOperatorTester& input_width(size_t input_width) { |
| assert(input_width >= 1); |
| this->input_width_ = input_width; |
| return *this; |
| } |
| |
| inline size_t input_width() const { |
| return this->input_width_; |
| } |
| |
| inline size_t output_height() const { |
| return input_height() * block_size(); |
| } |
| |
| inline size_t output_width() const { |
| return input_width() * block_size(); |
| } |
| |
| inline DepthToSpaceOperatorTester& block_size(size_t block_size) { |
| assert(block_size >= 2); |
| this->block_size_ = block_size; |
| return *this; |
| } |
| |
| inline size_t block_size() const { |
| return this->block_size_; |
| } |
| |
| inline size_t input_channels() const { |
| return output_channels() * block_size() * block_size(); |
| } |
| |
| inline DepthToSpaceOperatorTester& output_channels(size_t output_channels) { |
| assert(output_channels != 0); |
| this->output_channels_ = output_channels; |
| return *this; |
| } |
| |
| inline size_t output_channels() const { |
| return this->output_channels_; |
| } |
| |
| inline DepthToSpaceOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline DepthToSpaceOperatorTester& input_channels_stride(size_t input_channels_stride) { |
| assert(input_channels_stride >= 1); |
| this->input_channels_stride_ = input_channels_stride; |
| return *this; |
| } |
| |
| inline size_t input_channels_stride() const { |
| if (this->input_channels_stride_ == 0) { |
| return input_channels(); |
| } else { |
| assert(this->input_channels_stride_ >= input_channels()); |
| return this->input_channels_stride_; |
| } |
| } |
| |
| inline DepthToSpaceOperatorTester& output_channels_stride(size_t output_channels_stride) { |
| assert(output_channels_stride >= 1); |
| this->output_channels_stride_ = output_channels_stride; |
| return *this; |
| } |
| |
| inline size_t output_channels_stride() const { |
| if (this->output_channels_stride_ == 0) { |
| return output_channels(); |
| } else { |
| assert(this->output_channels_stride_ >= output_channels()); |
| return this->output_channels_stride_; |
| } |
| } |
| |
| inline DepthToSpaceOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestNHWCxX8() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| std::vector<int8_t> input( |
| (batch_size() * input_height() * input_width() - 1) * input_channels_stride() + input_channels()); |
| std::vector<int8_t> output( |
| (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::fill(output.begin(), output.end(), INT8_C(0xAF)); |
| |
| // Create, setup, run, and destroy Depth To Space operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t depth_to_space_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_depth_to_space_nhwc_x8( |
| output_channels(), input_channels_stride(), output_channels_stride(), |
| block_size(), 0, &depth_to_space_op)); |
| ASSERT_NE(nullptr, depth_to_space_op); |
| |
| // Smart pointer to automatically delete depth_to_space_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_depth_to_space_nhwc_x8( |
| depth_to_space_op, |
| batch_size(), input_height(), input_width(), |
| input.data(), output.data(), nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t iy = 0; iy < input_height(); iy++) { |
| for (size_t by = 0; by < block_size(); by++) { |
| for (size_t ix = 0; ix < input_width(); ix++) { |
| for (size_t bx = 0; bx < block_size(); bx++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| const size_t input_index = |
| ((i * input_height() + iy) * input_width() + ix) * input_channels_stride() + |
| (by * block_size() + bx) * output_channels() + oc; |
| const size_t output_index = |
| ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * |
| output_channels_stride() + oc; |
| ASSERT_EQ(int32_t(output[output_index]), int32_t(input[input_index])) |
| << "batch: " << i << " / " << batch_size() |
| << ", input x: " << ix << " / " << input_width() |
| << ", input y: " << iy << " / " << input_height() |
| << ", block x: " << bx << " / " << block_size() |
| << ", block y: " << by << " / " << block_size() |
| << ", output channel: " << oc << " / " << output_channels() |
| << ", input stride: " << input_channels_stride() |
| << ", output stride: " << output_channels_stride(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void TestNHWCxX16() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i16rng = std::bind(std::uniform_int_distribution<int16_t>(), std::ref(rng)); |
| |
| std::vector<int16_t> input( |
| (batch_size() * input_height() * input_width() - 1) * input_channels_stride() + input_channels()); |
| std::vector<int16_t> output( |
| (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(i16rng)); |
| std::fill(output.begin(), output.end(), INT16_C(0xDEAD)); |
| |
| // Create, setup, run, and destroy Depth To Space operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t depth_to_space_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_depth_to_space_nhwc_x16( |
| output_channels(), input_channels_stride(), output_channels_stride(), |
| block_size(), 0, &depth_to_space_op)); |
| ASSERT_NE(nullptr, depth_to_space_op); |
| |
| // Smart pointer to automatically delete depth_to_space_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_depth_to_space_nhwc_x16( |
| depth_to_space_op, |
| batch_size(), input_height(), input_width(), |
| input.data(), output.data(), nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t iy = 0; iy < input_height(); iy++) { |
| for (size_t by = 0; by < block_size(); by++) { |
| for (size_t ix = 0; ix < input_width(); ix++) { |
| for (size_t bx = 0; bx < block_size(); bx++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| const size_t input_index = |
| ((i * input_height() + iy) * input_width() + ix) * input_channels_stride() + |
| (by * block_size() + bx) * output_channels() + oc; |
| const size_t output_index = |
| ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * |
| output_channels_stride() + oc; |
| ASSERT_EQ(output[output_index], input[input_index]) |
| << "batch: " << i << " / " << batch_size() |
| << ", input x: " << ix << " / " << input_width() |
| << ", input y: " << iy << " / " << input_height() |
| << ", block x: " << bx << " / " << block_size() |
| << ", block y: " << by << " / " << block_size() |
| << ", output channel: " << oc << " / " << output_channels() |
| << ", input stride: " << input_channels_stride() |
| << ", output stride: " << output_channels_stride(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void TestNHWCxX32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(), std::ref(rng)); |
| |
| std::vector<int32_t> input( |
| (batch_size() * input_height() * input_width() - 1) * input_channels_stride() + input_channels()); |
| std::vector<int32_t> output( |
| (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(i32rng)); |
| std::fill(output.begin(), output.end(), INT32_C(0xDEADBEAF)); |
| |
| // Create, setup, run, and destroy Depth To Space operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t depth_to_space_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_depth_to_space_nhwc_x32( |
| output_channels(), input_channels_stride(), output_channels_stride(), |
| block_size(), 0, &depth_to_space_op)); |
| ASSERT_NE(nullptr, depth_to_space_op); |
| |
| // Smart pointer to automatically delete depth_to_space_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_depth_to_space_nhwc_x32( |
| depth_to_space_op, |
| batch_size(), input_height(), input_width(), |
| input.data(), output.data(), nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t iy = 0; iy < input_height(); iy++) { |
| for (size_t by = 0; by < block_size(); by++) { |
| for (size_t ix = 0; ix < input_width(); ix++) { |
| for (size_t bx = 0; bx < block_size(); bx++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| const size_t input_index = |
| ((i * input_height() + iy) * input_width() + ix) * input_channels_stride() + |
| (by * block_size() + bx) * output_channels() + oc; |
| const size_t output_index = |
| ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * |
| output_channels_stride() + oc; |
| ASSERT_EQ(output[output_index], input[input_index]) |
| << "batch: " << i << " / " << batch_size() |
| << ", input x: " << ix << " / " << input_width() |
| << ", input y: " << iy << " / " << input_height() |
| << ", block x: " << bx << " / " << block_size() |
| << ", block y: " << by << " / " << block_size() |
| << ", output channel: " << oc << " / " << output_channels() |
| << ", input stride: " << input_channels_stride() |
| << ", output stride: " << output_channels_stride(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void TestNCHW2NHWCxX32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(), std::ref(rng)); |
| |
| std::vector<int32_t> input(XNN_EXTRA_BYTES / sizeof(uint32_t) + |
| ((batch_size() - 1) * input_channels_stride() + input_channels()) * input_height() * input_width()); |
| std::vector<int32_t> output( |
| (batch_size() * output_height() * output_width() - 1) * output_channels_stride() + output_channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(i32rng)); |
| std::fill(output.begin(), output.end(), INT32_C(0xDEADBEAF)); |
| |
| // Create, setup, run, and destroy Depth To Space operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t depth_to_space_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_depth_to_space_nchw2nhwc_x32( |
| output_channels(), input_channels_stride(), output_channels_stride(), |
| block_size(), 0, &depth_to_space_op)); |
| ASSERT_NE(nullptr, depth_to_space_op); |
| |
| // Smart pointer to automatically delete depth_to_space_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_depth_to_space_op(depth_to_space_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_depth_to_space_nchw2nhwc_x32( |
| depth_to_space_op, |
| batch_size(), input_height(), input_width(), |
| input.data(), output.data(), nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(depth_to_space_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t iy = 0; iy < input_height(); iy++) { |
| for (size_t by = 0; by < block_size(); by++) { |
| for (size_t ix = 0; ix < input_width(); ix++) { |
| for (size_t bx = 0; bx < block_size(); bx++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| const size_t input_index = |
| i * input_channels_stride() * input_height() * input_width() + |
| (((by * block_size() + bx) * output_channels() + oc) * input_height() + iy) * input_width() + ix; |
| const size_t output_index = |
| ((i * output_height() + iy * block_size() + by) * output_width() + ix * block_size() + bx) * |
| output_channels_stride() + oc; |
| ASSERT_EQ(output[output_index], input[input_index]) |
| << "batch: " << i << " / " << batch_size() |
| << ", input x: " << ix << " / " << input_width() |
| << ", input y: " << iy << " / " << input_height() |
| << ", block x: " << bx << " / " << block_size() |
| << ", block y: " << by << " / " << block_size() |
| << ", output channel: " << oc << " / " << output_channels() |
| << ", input stride: " << input_channels_stride() |
| << ", output stride: " << output_channels_stride(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t input_height_{1}; |
| size_t input_width_{1}; |
| size_t output_channels_{1}; |
| size_t block_size_{2}; |
| size_t batch_size_{1}; |
| size_t input_channels_stride_{0}; |
| size_t output_channels_stride_{0}; |
| size_t iterations_{1}; |
| }; |