| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <random> |
| #include <type_traits> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/requantization.h> |
| #include <xnnpack/subgraph.h> |
| |
| #include "convolution-test-helpers.h" |
| #include <gtest/gtest.h> |
| |
| namespace xnnpack { |
| |
| template <class T, class BiasType = T> class DepthwiseConvolutionTestBase : public ::testing::Test { |
| protected: |
| DepthwiseConvolutionTestBase() |
| { |
| random_device = std::unique_ptr<std::random_device>(new std::random_device()); |
| rng = std::mt19937((*random_device)()); |
| input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15); |
| kernel_size_dist = std::uniform_int_distribution<uint32_t>(1, 5); |
| stride_dist = std::uniform_int_distribution<uint32_t>(1, 2); |
| f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f); |
| i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000); |
| |
| batch_size = input_size_dist(rng); |
| input_height = input_size_dist(rng); |
| input_width = input_size_dist(rng); |
| input_channels = input_size_dist(rng); |
| kernel_height = kernel_size_dist(rng); |
| kernel_width = kernel_size_dist(rng); |
| subsampling_height = stride_dist(rng); |
| subsampling_width = stride_dist(rng); |
| depth_multiplier = kernel_size_dist(rng); |
| dilation_height = stride_dist(rng); |
| dilation_width = stride_dist(rng); |
| input_padding_top = kernel_size_dist(rng); |
| input_padding_right = kernel_size_dist(rng); |
| input_padding_bottom = kernel_size_dist(rng); |
| input_padding_left = kernel_size_dist(rng); |
| output_height = xnn_compute_convolution_output_dimension( |
| input_padding_top + input_height + input_padding_bottom, kernel_height, dilation_height, subsampling_height); |
| output_width = xnn_compute_convolution_output_dimension( |
| input_padding_left + input_width + input_padding_right, kernel_width, dilation_width, subsampling_width); |
| output_channels = input_channels * depth_multiplier; |
| output_min = -std::numeric_limits<float>::infinity(); |
| output_max = std::numeric_limits<float>::infinity(); |
| |
| input_dims = {{batch_size, input_height, input_width, input_channels}}; |
| filter_dims = {{1, kernel_height, kernel_width, output_channels}}; |
| bias_dims = {{output_channels}}; |
| output_dims = {{batch_size, output_height, output_width, output_channels}}; |
| |
| input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * input_channels); |
| filter = std::vector<T>(batch_size * kernel_height * kernel_width * output_channels); |
| bias = std::vector<BiasType>(output_channels); |
| operator_output = std::vector<T>(batch_size * output_height * output_width * output_channels); |
| subgraph_output = std::vector<T>(batch_size * output_height * output_width * output_channels); |
| } |
| |
| std::unique_ptr<std::random_device> random_device; |
| std::mt19937 rng; |
| std::uniform_int_distribution<uint32_t> input_size_dist; |
| std::uniform_int_distribution<uint32_t> kernel_size_dist; |
| std::uniform_int_distribution<uint32_t> stride_dist; |
| std::uniform_int_distribution<int32_t> i32dist; |
| std::uniform_real_distribution<float> f32dist; |
| |
| uint32_t input_padding_top; |
| uint32_t input_padding_right; |
| uint32_t input_padding_bottom; |
| uint32_t input_padding_left; |
| uint32_t batch_size; |
| uint32_t input_height; |
| uint32_t input_width; |
| uint32_t kernel_height; |
| uint32_t kernel_width; |
| uint32_t subsampling_height; |
| uint32_t subsampling_width; |
| uint32_t dilation_height; |
| uint32_t dilation_width; |
| uint32_t depth_multiplier; |
| uint32_t input_channels; |
| uint32_t output_channels; |
| float output_min; |
| float output_max; |
| uint32_t output_height; |
| uint32_t output_width; |
| |
| std::array<size_t, 4> input_dims; |
| std::array<size_t, 4> filter_dims; |
| std::array<size_t, 1> bias_dims; |
| std::array<size_t, 4> output_dims; |
| |
| std::vector<T> input; |
| std::vector<T> filter; |
| std::vector<BiasType> bias; |
| std::vector<T> operator_output; |
| std::vector<T> subgraph_output; |
| }; |
| |
| template <class T> class QuantizedDepthwiseConvolutionTestBase : public DepthwiseConvolutionTestBase<T, int32_t> { |
| protected: |
| QuantizedDepthwiseConvolutionTestBase() |
| { |
| i8dist = std::uniform_int_distribution<int32_t>(std::numeric_limits<T>::min(), std::numeric_limits<T>::max()); |
| w8dist = std::uniform_int_distribution<int32_t>(-std::numeric_limits<T>::max(), std::numeric_limits<T>::max()); |
| u8dist = std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| accumulators = std::vector<int32_t>( |
| this->batch_size * this->output_height * this->output_width * this->input_channels * this->depth_multiplier); |
| scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f); |
| |
| input_scale = scale_dist(this->rng); |
| kernel_scale = scale_dist(this->rng); |
| if (std::is_same<T, int8_t>::value) { |
| input_zero_point = i8dist(this->rng); |
| kernel_zero_point = i8dist(this->rng); |
| } |
| else { |
| input_zero_point = u8dist(this->rng); |
| kernel_zero_point = 0; |
| } |
| } |
| |
| std::uniform_int_distribution<int32_t> i8dist; |
| std::uniform_int_distribution<int32_t> u8dist; |
| std::uniform_int_distribution<int32_t> w8dist; |
| std::uniform_real_distribution<float> scale_dist; |
| std::vector<int32_t> accumulators; |
| |
| float input_scale; |
| float kernel_scale; |
| float output_scale = 1.0f; |
| |
| typedef typename std::conditional<std::is_same<T, uint8_t>::value, uint8_t, int8_t>::type ZeroPointType; |
| ZeroPointType input_zero_point; |
| ZeroPointType kernel_zero_point; |
| ZeroPointType output_zero_point = 0; |
| }; |
| |
| using DepthwiseConvolutionTestQC8 = QuantizedDepthwiseConvolutionTestBase<int8_t>; |
| using DepthwiseConvolutionTestQS8 = QuantizedDepthwiseConvolutionTestBase<int8_t>; |
| using DepthwiseConvolutionTestQU8 = QuantizedDepthwiseConvolutionTestBase<uint8_t>; |
| using DepthwiseConvolutionTestF32 = DepthwiseConvolutionTestBase<float>; |
| |
| TEST_F(DepthwiseConvolutionTestQC8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| std::vector<float> requantization_scales(input_channels * depth_multiplier, 1.0f); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_channelwise_quantized_tensor_value( |
| subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 3, |
| filter_dims.data(), filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_channelwise_quantized_tensor_value( |
| subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qc8); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 3); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->inputs[1], filter_id); |
| ASSERT_EQ(node->inputs[2], bias_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestQS8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), |
| filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 3); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->inputs[1], filter_id); |
| ASSERT_EQ(node->inputs[2], bias_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestQU8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), |
| filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 3); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->inputs[1], filter_id); |
| ASSERT_EQ(node->inputs[2], bias_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestF32, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); |
| ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 3); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->inputs[1], filter_id); |
| ASSERT_EQ(node->inputs[2], bias_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestQC8, matches_operator_api) |
| { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); |
| std::vector<float> requantization_scales(input_channels * depth_multiplier); |
| const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); |
| const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); |
| |
| // Compute reference results, without renormalization. |
| compute_depthwise_convolution_qs8_reference_results( |
| batch_size, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| input_padding_top, |
| input_padding_right, |
| input_padding_bottom, |
| input_padding_left, |
| kernel_height, |
| kernel_width, |
| subsampling_height, |
| subsampling_width, |
| dilation_height, |
| dilation_width, |
| input_channels, |
| depth_multiplier, |
| input_zero_point, |
| input, |
| filter, |
| accumulators, |
| /*has_bias=*/true, |
| bias); |
| |
| // Compute renormalization parameters. |
| for (size_t c = 0; c < input_channels * depth_multiplier; c++) { |
| int32_t accumulated_min = accumulators[c]; |
| int32_t accumulated_max = accumulators[c]; |
| for (size_t px = 0; px < batch_size * output_height * output_width; px++) { |
| accumulated_min = std::min(accumulated_min, accumulators[px * input_channels * depth_multiplier + c]); |
| accumulated_max = std::max(accumulated_max, accumulators[px * input_channels * depth_multiplier + c]); |
| } |
| |
| float requantization_scale = 0x1.0p-32f; |
| if (accumulated_max != 0) { |
| requantization_scale = std::max( |
| requantization_scale, |
| float(int32_t(std::numeric_limits<int8_t>::max()) - int32_t(output_zero_point)) / float(accumulated_max)); |
| } |
| if (accumulated_min != 0) { |
| requantization_scale = std::max( |
| requantization_scale, |
| float(int32_t(std::numeric_limits<int8_t>::min()) - int32_t(output_zero_point)) / float(accumulated_min)); |
| } |
| requantization_scale = std::min(requantization_scale, 0x1.FFFFFEp-1f); |
| |
| requantization_scales[c] = requantization_scale; |
| } |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| xnn_operator_t op = nullptr; |
| |
| // Call operator API. |
| const xnn_status status = xnn_create_convolution2d_nhwc_qc8( |
| input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, |
| subsampling_height, subsampling_width, dilation_height, dilation_width, |
| /*groups=*/input_channels, /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, |
| input_scale, requantization_scales.data(), filter.data(), bias.data(), output_zero_point, output_scale, |
| quantized_output_min, quantized_output_max, |
| /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_convolution2d_nhwc_qc8( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_channelwise_quantized_tensor_value( |
| subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 3, |
| filter_dims.data(), filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_channelwise_quantized_tensor_value( |
| subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestQS8, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op = nullptr; |
| |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); |
| |
| compute_convolution_qs8_reference_results( |
| batch_size, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| input_padding_top, |
| input_padding_right, |
| input_padding_bottom, |
| input_padding_left, |
| kernel_height, |
| kernel_width, |
| subsampling_height, |
| subsampling_width, |
| dilation_height, |
| dilation_width, |
| /*groups=*/input_channels, |
| /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, |
| input_zero_point, |
| input, |
| filter, |
| accumulators, |
| /*has_bias=*/true, |
| bias); |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| |
| float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; |
| int8_t output_zero_point = int8_t(std::max( |
| std::min( |
| lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<int8_t>::max())), |
| long(std::numeric_limits<int8_t>::min()))); |
| const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); |
| const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); |
| |
| // Call operator API. |
| const xnn_status status = xnn_create_convolution2d_nhwc_qs8( |
| input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, |
| subsampling_height, subsampling_width, dilation_height, dilation_width, |
| /*groups=*/input_channels, /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, |
| input_scale, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, |
| quantized_output_max, |
| /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_convolution2d_nhwc_qs8( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, kernel_zero_point, kernel_scale, filter_dims.size(), |
| filter_dims.data(), filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestQU8, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op = nullptr; |
| |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::generate(filter.begin(), filter.end(), [&]() { return u8dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); |
| |
| // Compute reference results, without renormalization. |
| compute_convolution_qu8_reference_results( |
| batch_size, |
| output_height, |
| output_width, |
| input_height, |
| input_width, |
| input_padding_top, |
| input_padding_right, |
| input_padding_bottom, |
| input_padding_left, |
| kernel_height, |
| kernel_width, |
| subsampling_height, |
| subsampling_width, |
| dilation_height, |
| dilation_width, |
| /*groups=*/input_channels, |
| /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, |
| input_zero_point, |
| kernel_zero_point, |
| input, |
| filter, |
| accumulators, |
| /*has_bias=*/true, |
| bias); |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| |
| const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; |
| const uint8_t output_zero_point = uint8_t(std::max( |
| std::min( |
| lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<uint8_t>::max())), |
| long(std::numeric_limits<uint8_t>::min()))); |
| const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); |
| const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); |
| |
| // Call operator API. |
| const xnn_status status = xnn_create_convolution2d_nhwc_qu8( |
| input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, |
| subsampling_height, subsampling_width, dilation_height, dilation_width, |
| /*groups=*/input_channels, /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, |
| input_scale, kernel_zero_point, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, |
| quantized_output_min, quantized_output_max, |
| /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_convolution2d_nhwc_qu8( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), |
| filter.data(), /*external_id=*/1, |
| /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |
| |
| TEST_F(DepthwiseConvolutionTestF32, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op = nullptr; |
| |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), nanf("")); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); |
| |
| // Call operator API. |
| const xnn_status status = xnn_create_convolution2d_nhwc_f32( |
| input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, |
| subsampling_height, subsampling_width, dilation_height, dilation_width, |
| /*groups=*/input_channels, /*group_input_channels=*/1, |
| /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, filter.data(), |
| bias.data(), output_min, output_max, |
| /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_convolution2d_nhwc_f32( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t filter_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), |
| /*external_id=*/1, /*flags=*/0, &filter_id)); |
| |
| uint32_t bias_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), |
| /*external_id=*/2, /*flags=*/0, &bias_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_depthwise_convolution_2d( |
| subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, |
| kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, |
| input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, |
| /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |
| } // namespace xnnpack |