| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| #include <xnnpack/requantization.h> |
| |
| |
| class DWConvMicrokernelTester { |
| public: |
| inline DWConvMicrokernelTester& width(uint32_t width) { |
| assert(width >= 1); |
| this->width_ = width; |
| return *this; |
| } |
| |
| inline uint32_t width() const { |
| return this->width_; |
| } |
| |
| inline DWConvMicrokernelTester& step(uint32_t step) { |
| assert(step >= 1); |
| this->step_ = step; |
| return *this; |
| } |
| |
| inline uint32_t step() const { |
| return this->step_; |
| } |
| |
| inline DWConvMicrokernelTester& channels(uint32_t channels) { |
| assert(channels >= 1); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline uint32_t channels() const { |
| return this->channels_; |
| } |
| |
| inline DWConvMicrokernelTester& cr(uint32_t cr) { |
| assert(cr != 0); |
| this->cr_ = cr; |
| return *this; |
| } |
| |
| inline uint32_t cr() const { |
| return this->cr_; |
| } |
| |
| inline DWConvMicrokernelTester& kr(uint32_t kr) { |
| assert(kr != 0); |
| this->kr_ = kr; |
| return *this; |
| } |
| |
| inline uint32_t kr() const { |
| return this->kr_; |
| } |
| |
| inline uint32_t packed_channels() const { |
| return (channels() / cr() + !!(channels() % cr())) * cr(); |
| } |
| |
| inline DWConvMicrokernelTester& output_stride(uint32_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline uint32_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->output_stride_ >= channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline DWConvMicrokernelTester& input_zero_point(uint8_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline DWConvMicrokernelTester& kernel_zero_point(uint8_t kernel_zero_point) { |
| this->kernel_zero_point_ = kernel_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t kernel_zero_point() const { |
| return this->kernel_zero_point_; |
| } |
| |
| inline DWConvMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline DWConvMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline DWConvMicrokernelTester& input_offset(size_t input_offset) { |
| this->input_offset_ = input_offset; |
| return *this; |
| } |
| |
| inline size_t input_offset() const { |
| return this->input_offset_; |
| } |
| |
| inline DWConvMicrokernelTester& zero_index(size_t zero_index) { |
| this->zero_index_ = zero_index; |
| return *this; |
| } |
| |
| inline size_t zero_index() const { |
| return this->zero_index_; |
| } |
| |
| inline DWConvMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test( |
| xnn_qu8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, |
| xnn_init_qu8_conv_minmax_params_fn init_params, |
| xnn_qu8_requantize_fn requantize) const |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i32dist(-10000, 10000); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| std::vector<const uint8_t*> indirection((width() - 1) * step() + kr()); |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels()); |
| std::vector<uint8_t> kernel(channels() * kr()); |
| std::vector<int32_t> bias(channels()); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_weights((kr() + sizeof(int32_t) / sizeof(uint8_t)) * packed_channels()); |
| std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output((width() - 1) * output_stride() + channels()); |
| std::vector<int32_t> accumulators(width() * channels()); |
| std::vector<uint8_t> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| do { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); |
| do { |
| std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); }); |
| } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(zero.begin(), zero.end(), input_zero_point()); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0); |
| const xnn_qu8_packing_params packing_params = { input_zero_point(), kernel_zero_point() }; |
| xnn_pack_qu8_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), |
| 0 /* extra bytes */, &packing_params); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without renormalization. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = bias[c]; |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += |
| (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point())) * |
| (int32_t(kernel[c * kr() + k]) - int32_t(kernel_zero_point())); |
| } |
| } |
| accumulators[x * channels() + c] = acc; |
| } |
| } |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min); |
| const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; |
| const uint8_t output_zero_point = uint8_t(std::max(std::min( |
| lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min()))); |
| |
| // Prepare parameters. |
| const float requantization_scale = 1.0f / float(output_scale); |
| union xnn_qu8_conv_minmax_params quantization_params; |
| init_params(&quantization_params, |
| kernel_zero_point(), requantization_scale, output_zero_point, qmin(), qmax()); |
| |
| // Renormalize reference results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[x * channels() + c] = requantize( |
| accumulators[x * channels() + c], requantization_scale, output_zero_point, qmin(), qmax()); |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv_minmax( |
| channels(), width(), |
| indirection.data(), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(uint8_t), |
| input_offset() * sizeof(uint8_t), zero.data(), |
| &quantization_params); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_EQ(uint32_t(output[x * output_stride() + c]), uint32_t(output_ref[x * channels() + c])) |
| << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; |
| } |
| } |
| } |
| } |
| |
| void Test( |
| xnn_qc8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, |
| xnn_init_qc8_conv_minmax_params_fn init_params, |
| xnn_qs8_requantize_fn requantize) const |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i32dist(-10000, 10000); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| std::uniform_int_distribution<int32_t> w8dist( |
| -std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<const int8_t*> indirection((width() - 1) * step() + kr()); |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); |
| std::vector<int8_t> kernel(channels() * kr()); |
| std::vector<int32_t> bias(channels()); |
| std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_weights((kr() + (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t)) * packed_channels()); |
| std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> output((width() - 1) * output_stride() + channels()); |
| std::vector<int32_t> accumulators(width() * channels()); |
| std::vector<float> scale(channels()); |
| std::vector<int8_t> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| do { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); |
| do { |
| std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); }); |
| } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80)); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0); |
| const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) }; |
| xnn_pack_qs8_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), cr() * sizeof(float), |
| &packing_params); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without renormalization. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = bias[c]; |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += |
| (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) * |
| int32_t(kernel[c * kr() + k]); |
| } |
| } |
| accumulators[x * channels() + c] = acc; |
| } |
| } |
| |
| // Compute renormalization parameters. |
| const int8_t output_zero_point = -1; |
| for (size_t c = 0; c < channels(); c++) { |
| int32_t accumulated_min = accumulators[c]; |
| int32_t accumulated_max = accumulators[c]; |
| for (size_t x = 0; x < width(); x++) { |
| accumulated_min = std::min(accumulated_min, accumulators[x * channels() + c]); |
| accumulated_max = std::max(accumulated_max, accumulators[x * channels() + c]); |
| } |
| const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min); |
| const float output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; |
| scale[c] = 1.0f / output_scale; |
| } |
| xnn_init_qc8_scale_fp32_params( |
| channels(), cr(), |
| cr() * (kr() * sizeof(int8_t) + sizeof(int32_t) + sizeof(float)), scale.data(), |
| (void*) ((uintptr_t) packed_weights.data() + cr() * (kr() * sizeof(int8_t) + sizeof(int32_t)))); |
| |
| // Prepare parameters. |
| union xnn_qc8_conv_minmax_params minmax_params; |
| init_params(&minmax_params, |
| output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| |
| // Renormalize reference results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[x * channels() + c] = requantize( |
| accumulators[x * channels() + c], scale[c], output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv_minmax( |
| channels(), width(), |
| indirection.data(), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(int8_t), |
| input_offset() * sizeof(int8_t), zero.data(), |
| &minmax_params); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c])) |
| << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; |
| } |
| } |
| } |
| } |
| |
| void Test( |
| xnn_qs8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, |
| xnn_init_qs8_conv_minmax_params_fn init_params, |
| xnn_qs8_requantize_fn requantize) const |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i32dist(-10000, 10000); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| std::uniform_int_distribution<int32_t> w8dist( |
| -std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<const int8_t*> indirection((width() - 1) * step() + kr()); |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); |
| std::vector<int8_t> kernel(channels() * kr()); |
| std::vector<int32_t> bias(channels()); |
| std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_weights((kr() + sizeof(int32_t) / sizeof(int8_t)) * packed_channels()); |
| std::vector<int8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> output((width() - 1) * output_stride() + channels()); |
| std::vector<int32_t> accumulators(width() * channels()); |
| std::vector<int8_t> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| do { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); |
| do { |
| std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); }); |
| } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80)); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0); |
| const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) }; |
| xnn_pack_qs8_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), |
| 0 /* extra bytes */, &packing_params); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without renormalization. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = bias[c]; |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += |
| (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) * |
| int32_t(kernel[c * kr() + k]); |
| } |
| } |
| accumulators[x * channels() + c] = acc; |
| } |
| } |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min); |
| const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; |
| const int8_t output_zero_point = int8_t(std::max(std::min( |
| lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min()))); |
| |
| // Prepare parameters. |
| const float requantization_scale = 1.0f / float(output_scale); |
| union xnn_qs8_conv_minmax_params quantization_params; |
| init_params(&quantization_params, |
| requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| |
| // Renormalize reference results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[x * channels() + c] = requantize( |
| accumulators[x * channels() + c], requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv_minmax( |
| channels(), width(), |
| indirection.data(), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(int8_t), |
| input_offset() * sizeof(int8_t), zero.data(), |
| &quantization_params); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c])) |
| << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f16_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f16_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const uint16_t*> indirection((width() - 1) * step() + kr()); |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + indirection.size() * channels()); |
| std::vector<uint16_t> kernel(channels() * kr()); |
| std::vector<uint16_t> bias(channels()); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights((kr() + 1) * packed_channels()); |
| std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> output((width() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(zero.begin(), zero.end(), 0); |
| std::fill(output_ref.begin(), output_ref.end(), 0.0f); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0); |
| xnn_pack_f16_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), |
| 0 /* extra bytes */, nullptr); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = fp16_ieee_to_fp32_value(bias[c]); |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += fp16_ieee_to_fp32_value(indirection[x * step() + k][c + input_offset()]) * fp16_ieee_to_fp32_value(kernel[c * kr() + k]); |
| } |
| } |
| output_ref[x * channels() + c] = acc; |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| |
| // Prepare parameters. |
| xnn_f16_minmax_params params; |
| init_params(¶ms, |
| fp16_ieee_from_fp32_value(output_min), |
| fp16_ieee_from_fp32_value(output_max)); |
| |
| // Clamp reference results. |
| for (float& output_val : output_ref) { |
| output_val = std::max(std::min(output_val, output_max), output_min); |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv_minmax( |
| channels(), width(), |
| reinterpret_cast<const void**>(indirection.data()), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(uint16_t), |
| input_offset() * sizeof(uint16_t), zero.data(), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_min) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_LE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_max) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_NEAR(output_ref[x * channels() + c], fp16_ieee_to_fp32_value(output[x * output_stride() + c]), std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 1.0e-2f)) |
| << "x = " << x << ", channel = " << c; |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_dwconv_unipass_ukernel_function dwconv) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirection((width() - 1) * step() + kr()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); |
| std::vector<float> kernel(channels() * kr()); |
| std::vector<float> bias(channels()); |
| std::vector<float, AlignedAllocator<float, 64>> packed_weights((kr() + 1) * packed_channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output((width() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); |
| std::fill(zero.begin(), zero.end(), 0.0f); |
| std::fill(output_ref.begin(), output_ref.end(), nanf("")); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| xnn_pack_f32_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), |
| 0 /* extra bytes */, nullptr); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = bias[c]; |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k]; |
| } |
| } |
| output_ref[x * channels() + c] = acc; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv( |
| channels(), width(), |
| indirection.data(), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| input_offset() * sizeof(float), zero.data(), |
| nullptr); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR( |
| output_ref[x * channels() + c], |
| output[x * output_stride() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-5) |
| << "x = " << x << ", channel = " << c; |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f32_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirection((width() - 1) * step() + kr()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); |
| std::vector<float> kernel(channels() * kr()); |
| std::vector<float> bias(channels()); |
| std::vector<float, AlignedAllocator<float, 64>> packed_weights((kr() + 1) * packed_channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output((width() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(width() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); |
| std::fill(zero.begin(), zero.end(), 0.0f); |
| std::fill(output_ref.begin(), output_ref.end(), nanf("")); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| xnn_pack_f32_dwconv_ghw_w( |
| kr(), kr(), 1, channels(), cr(), |
| kernel.data(), bias.data(), packed_weights.data(), |
| 0 /* extra bytes */, nullptr); |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| if (zero_index() != SIZE_MAX) { |
| for (size_t i = 0; i < indirection.size(); i += kr()) { |
| indirection[i + zero_index()] = zero.data(); |
| } |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = bias[c]; |
| for (size_t k = 0; k < kr(); k++) { |
| if (indirection[x * step() + k] != zero.data()) { |
| acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k]; |
| } |
| } |
| output_ref[x * channels() + c] = acc; |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| const float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params; |
| init_params(¶ms, output_min, output_max); |
| |
| // Clamp reference results. |
| for (float& output_val : output_ref) { |
| output_val = std::max(std::min(output_val, output_max), output_min); |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv_minmax( |
| channels(), width(), |
| indirection.data(), packed_weights.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| input_offset() * sizeof(float), zero.data(), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < width(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(output[x * output_stride() + c], output_min) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_LE(output[x * output_stride() + c], output_max) |
| << "x = " << x << ", channel = " << c; |
| ASSERT_NEAR( |
| output_ref[x * channels() + c], |
| output[x * output_stride() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-5) |
| << "x = " << x << ", channel = " << c; |
| } |
| } |
| } |
| } |
| |
| private: |
| uint32_t channels_{1}; |
| uint32_t cr_{1}; |
| uint32_t kr_{1}; |
| uint32_t width_{1}; |
| uint32_t step_{1}; |
| uint32_t output_stride_{0}; |
| uint8_t input_zero_point_{127}; |
| uint8_t kernel_zero_point_{127}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t input_offset_{0}; |
| size_t zero_index_{SIZE_MAX}; |
| size_t iterations_{3}; |
| }; |