| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <memory> |
| #include <numeric> |
| #include <random> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/node-type.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/subgraph.h> |
| |
| #include <gtest/gtest.h> |
| |
| template <typename T> class EvenSplit3Test : public ::testing::Test { |
| protected: |
| EvenSplit3Test() |
| { |
| random_device = std::unique_ptr<std::random_device>(new std::random_device()); |
| rng = std::mt19937((*random_device)()); |
| shape_dist = std::uniform_int_distribution<size_t>(1, XNN_MAX_TENSOR_DIMS); |
| dim_dist = std::uniform_int_distribution<size_t>(1, 9); |
| f32dist = std::uniform_real_distribution<float>(); |
| i8dist = |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| u8dist = |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| scale_dist = std::uniform_real_distribution<float>(0.1f, 5.0f); |
| |
| output1_dims = RandomShape(); |
| output2_dims = output1_dims; |
| output3_dims = output1_dims; |
| input_dims = output1_dims; |
| axis = RandomAxis(output1_dims); |
| input_dims[axis] = output1_dims[axis] + output2_dims[axis] + output3_dims[axis]; |
| |
| input = std::vector<T>(NumElements(input_dims)); |
| operator_output1 = std::vector<T>(NumElements(output1_dims)); |
| operator_output2 = std::vector<T>(NumElements(output2_dims)); |
| operator_output3 = std::vector<T>(NumElements(output3_dims)); |
| subgraph_output1 = std::vector<T>(NumElements(output1_dims)); |
| subgraph_output2 = std::vector<T>(NumElements(output2_dims)); |
| subgraph_output3 = std::vector<T>(NumElements(output3_dims)); |
| |
| signed_zero_point = i8dist(rng); |
| unsigned_zero_point = u8dist(rng); |
| scale = scale_dist(rng); |
| |
| batch_size = 1; |
| input_stride = 1; |
| for (size_t i = 0; i < axis; i++) { |
| batch_size *= input_dims[i]; |
| } |
| |
| for (size_t i = axis; i < input_dims.size(); i++) { |
| input_stride *= input_dims[i]; |
| } |
| channels = input_stride / 3; |
| } |
| |
| std::vector<size_t> RandomShape() |
| { |
| std::vector<size_t> dims(shape_dist(rng)); |
| std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); }); |
| return dims; |
| } |
| |
| size_t RandomAxis(const std::vector<size_t>& dims) |
| { |
| return std::uniform_int_distribution<size_t>(0, dims.size() - 1)(rng); |
| } |
| |
| size_t NumElements(const std::vector<size_t>& dims) |
| { |
| return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>()); |
| } |
| |
| std::unique_ptr<std::random_device> random_device; |
| std::mt19937 rng; |
| std::uniform_int_distribution<size_t> shape_dist; |
| std::uniform_int_distribution<size_t> dim_dist; |
| std::uniform_real_distribution<float> f32dist; |
| std::uniform_int_distribution<int32_t> i8dist; |
| std::uniform_int_distribution<int32_t> u8dist; |
| std::uniform_real_distribution<float> scale_dist; |
| |
| uint32_t output1_id; |
| uint32_t output2_id; |
| uint32_t output3_id; |
| uint32_t input_id; |
| |
| std::vector<size_t> output1_dims; |
| std::vector<size_t> output2_dims; |
| std::vector<size_t> output3_dims; |
| std::vector<size_t> input_dims; |
| |
| size_t axis; |
| size_t batch_size; |
| size_t channels; |
| size_t input_stride; |
| |
| int32_t signed_zero_point; |
| int32_t unsigned_zero_point; |
| float scale; |
| |
| std::vector<T> operator_output1; |
| std::vector<T> operator_output2; |
| std::vector<T> operator_output3; |
| std::vector<T> subgraph_output1; |
| std::vector<T> subgraph_output2; |
| std::vector<T> subgraph_output3; |
| std::vector<T> input; |
| }; |
| |
| using EvenSplit3TestQS8 = EvenSplit3Test<int8_t>; |
| using EvenSplit3TestQU8 = EvenSplit3Test<uint8_t>; |
| using EvenSplit3TestF32 = EvenSplit3Test<float>; |
| |
| TEST_F(EvenSplit3TestQS8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output3_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_even_split3); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); |
| ASSERT_EQ(node->params.even_split.axis, axis); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 3); |
| ASSERT_EQ(node->outputs[0], output1_id); |
| ASSERT_EQ(node->outputs[1], output2_id); |
| ASSERT_EQ(node->outputs[2], output3_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(EvenSplit3TestQU8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output3_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_even_split3); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); |
| ASSERT_EQ(node->params.even_split.axis, axis); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 3); |
| ASSERT_EQ(node->outputs[0], output1_id); |
| ASSERT_EQ(node->outputs[1], output2_id); |
| ASSERT_EQ(node->outputs[2], output3_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(EvenSplit3TestF32, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output3_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_even_split3); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
| ASSERT_EQ(node->params.even_split.axis, axis); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 3); |
| ASSERT_EQ(node->outputs[0], output1_id); |
| ASSERT_EQ(node->outputs[1], output2_id); |
| ASSERT_EQ(node->outputs[2], output3_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(EvenSplit3TestQS8, matches_operator_api) |
| { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::fill(operator_output1.begin(), operator_output1.end(), INT8_C(0xA5)); |
| std::fill(operator_output2.begin(), operator_output2.end(), INT8_C(0xA5)); |
| std::fill(operator_output3.begin(), operator_output3.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output1.begin(), subgraph_output1.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output2.begin(), subgraph_output2.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output3.begin(), subgraph_output3.end(), INT8_C(0xA5)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op1 = nullptr; |
| xnn_operator_t op2 = nullptr; |
| xnn_operator_t op3 = nullptr; |
| |
| // Call operator API. |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op1)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op1(op1, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op2)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op2(op2, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op3)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op3(op3, xnn_delete_operator); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x8(op1, batch_size, input.data(), operator_output1.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x8( |
| op2, batch_size, (uint8_t*) input.data() + op1->channels, operator_output2.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_copy_nc_x8( |
| op3, batch_size, (uint8_t*) input.data() + op1->channels * 2, operator_output3.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op1, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op2, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op3, nullptr /* thread pool */)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, signed_zero_point, scale, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 4> external = { |
| xnn_external_value{input_id, input.data()}, |
| xnn_external_value{output1_id, subgraph_output1.data()}, |
| xnn_external_value{output2_id, subgraph_output2.data()}, |
| xnn_external_value{output3_id, subgraph_output3.data()}, |
| }; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output1, operator_output1); |
| ASSERT_EQ(subgraph_output2, operator_output2); |
| ASSERT_EQ(subgraph_output3, operator_output3); |
| } |
| |
| TEST_F(EvenSplit3TestQU8, matches_operator_api) |
| { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::fill(operator_output1.begin(), operator_output1.end(), UINT8_C(0xA5)); |
| std::fill(operator_output2.begin(), operator_output2.end(), UINT8_C(0xA5)); |
| std::fill(operator_output3.begin(), operator_output3.end(), UINT8_C(0xA5)); |
| std::fill(subgraph_output1.begin(), subgraph_output1.end(), UINT8_C(0xA5)); |
| std::fill(subgraph_output2.begin(), subgraph_output2.end(), UINT8_C(0xA5)); |
| std::fill(subgraph_output3.begin(), subgraph_output3.end(), UINT8_C(0xA5)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op1 = nullptr; |
| xnn_operator_t op2 = nullptr; |
| xnn_operator_t op3 = nullptr; |
| |
| // Call operator API. |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op1)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op1(op1, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op2)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op2(op2, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x8(channels, input_stride, channels, /*flags=*/0, &op3)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op3(op3, xnn_delete_operator); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x8(op1, batch_size, input.data(), operator_output1.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x8( |
| op2, batch_size, (uint8_t*) input.data() + op1->channels, operator_output2.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_copy_nc_x8( |
| op3, batch_size, (uint8_t*) input.data() + op1->channels * 2, operator_output3.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op1, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op2, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op3, nullptr /* thread pool */)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, unsigned_zero_point, scale, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output3_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 4> external = { |
| xnn_external_value{input_id, input.data()}, |
| xnn_external_value{output1_id, subgraph_output1.data()}, |
| xnn_external_value{output2_id, subgraph_output2.data()}, |
| xnn_external_value{output3_id, subgraph_output3.data()}, |
| }; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output1, operator_output1); |
| ASSERT_EQ(subgraph_output2, operator_output2); |
| ASSERT_EQ(subgraph_output3, operator_output3); |
| } |
| |
| TEST_F(EvenSplit3TestF32, matches_operator_api) |
| { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(operator_output1.begin(), operator_output1.end(), std::nanf("")); |
| std::fill(operator_output2.begin(), operator_output2.end(), std::nanf("")); |
| std::fill(operator_output3.begin(), operator_output3.end(), std::nanf("")); |
| std::fill(subgraph_output1.begin(), subgraph_output1.end(), std::nanf("")); |
| std::fill(subgraph_output2.begin(), subgraph_output2.end(), std::nanf("")); |
| std::fill(subgraph_output3.begin(), subgraph_output3.end(), std::nanf("")); |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_operator_t op1 = nullptr; |
| xnn_operator_t op2 = nullptr; |
| xnn_operator_t op3 = nullptr; |
| |
| // Call operator API. |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x32(channels, input_stride, channels, /*flags=*/0, &op1)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op1(op1, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x32(channels, input_stride, channels, /*flags=*/0, &op2)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op2(op2, xnn_delete_operator); |
| ASSERT_EQ(xnn_status_success, xnn_create_copy_nc_x32(channels, input_stride, channels, /*flags=*/0, &op3)); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op3(op3, xnn_delete_operator); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x32(op1, batch_size, input.data(), operator_output1.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_copy_nc_x32( |
| op2, batch_size, (uint32_t*) input.data() + op1->channels, operator_output2.data(), nullptr /* thread pool */)); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_copy_nc_x32( |
| op3, batch_size, (uint32_t*) input.data() + op1->channels * 2, operator_output3.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op1, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op2, nullptr /* thread pool */)); |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op3, nullptr /* thread pool */)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/4, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| output1_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output1_dims.size(), output1_dims.data(), nullptr, 1, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output1_id)); |
| ASSERT_NE(output1_id, XNN_INVALID_NODE_ID); |
| |
| output2_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output2_dims.size(), output2_dims.data(), nullptr, 2, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output2_id)); |
| ASSERT_NE(output2_id, XNN_INVALID_NODE_ID); |
| |
| output3_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output3_dims.size(), output3_dims.data(), nullptr, 3, |
| /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output3_id)); |
| ASSERT_NE(output3_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_even_split3(subgraph, axis, input_id, output1_id, output2_id, output3_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 4> external = { |
| xnn_external_value{input_id, input.data()}, |
| xnn_external_value{output1_id, subgraph_output1.data()}, |
| xnn_external_value{output2_id, subgraph_output2.data()}, |
| xnn_external_value{output3_id, subgraph_output3.data()}, |
| }; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output1, operator_output1); |
| ASSERT_EQ(subgraph_output2, operator_output2); |
| ASSERT_EQ(subgraph_output3, operator_output3); |
| } |