| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/cache.h> |
| |
| |
| class FullyConnectedOperatorTester { |
| public: |
| enum class WeightsType { |
| Default, |
| FP32, |
| }; |
| |
| inline FullyConnectedOperatorTester& input_channels(size_t input_channels) { |
| assert(input_channels >= 1); |
| this->input_channels_ = input_channels; |
| return *this; |
| } |
| |
| inline size_t input_channels() const { |
| return this->input_channels_; |
| } |
| |
| inline FullyConnectedOperatorTester& output_channels(size_t output_channels) { |
| assert(output_channels >= 1); |
| this->output_channels_ = output_channels; |
| return *this; |
| } |
| |
| inline size_t output_channels() const { |
| return this->output_channels_; |
| } |
| |
| inline FullyConnectedOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size >= 1); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline FullyConnectedOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride >= 1); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return input_channels(); |
| } else { |
| assert(this->input_stride_ >= input_channels()); |
| return this->input_stride_; |
| } |
| } |
| |
| inline FullyConnectedOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride >= 1); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return output_channels(); |
| } else { |
| assert(this->output_stride_ >= output_channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline FullyConnectedOperatorTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline FullyConnectedOperatorTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline FullyConnectedOperatorTester& transpose_weights(bool transpose_weights) { |
| this->transpose_weights_ = transpose_weights; |
| return *this; |
| } |
| |
| inline bool transpose_weights() const { |
| return this->transpose_weights_; |
| } |
| |
| inline FullyConnectedOperatorTester& has_bias(bool has_bias) { |
| this->has_bias_ = has_bias; |
| return *this; |
| } |
| |
| inline bool has_bias() const { |
| return this->has_bias_; |
| } |
| |
| inline FullyConnectedOperatorTester& weights_type(WeightsType weights_type) { |
| this->weights_type_ = weights_type; |
| return *this; |
| } |
| |
| inline WeightsType weights_type() const { |
| return this->weights_type_; |
| } |
| |
| inline FullyConnectedOperatorTester& use_weights_cache(bool use_weights_cache) { |
| this->use_weights_cache_ = use_weights_cache; |
| return *this; |
| } |
| |
| inline bool use_weights_cache() const { |
| return this->use_weights_cache_; |
| } |
| |
| inline FullyConnectedOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestQS8() const { |
| ASSERT_EQ(weights_type(), WeightsType::Default); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i32dist(-10000, 10000); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| std::uniform_int_distribution<int32_t> w8dist( |
| -std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + |
| (batch_size() - 1) * input_stride() + input_channels()); |
| std::vector<int8_t> kernel(output_channels() * input_channels()); |
| std::vector<int32_t> bias(output_channels()); |
| std::vector<int8_t> output((batch_size() - 1) * output_stride() + output_channels()); |
| std::vector<int32_t> accumulators(batch_size() * output_channels()); |
| std::vector<double> output_ref(batch_size() * output_channels()); |
| |
| const int8_t input_zero_point = 127; |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| // Compute reference results, without renormalization. |
| if (has_bias()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| accumulators[i * output_channels() + oc] = bias[oc]; |
| } |
| } |
| } else { |
| std::fill(accumulators.begin(), accumulators.end(), 0); |
| } |
| if (transpose_weights()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| accumulators[i * output_channels() + oc] += |
| (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * |
| int32_t(kernel[ic * output_channels() + oc]); |
| } |
| } |
| } |
| } else { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| accumulators[i * output_channels() + oc] += |
| (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * |
| int32_t(kernel[oc * input_channels() + ic]); |
| } |
| } |
| } |
| } |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| |
| const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; |
| const int8_t output_zero_point = int8_t(std::max(std::min( |
| lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min()))); |
| |
| // Renormalize reference results. |
| std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), |
| [this, output_scale, output_zero_point](int32_t x) -> double { |
| return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point); |
| }); |
| |
| // Create, setup, run, and destroy Fully Connected operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t fully_connected_op = nullptr; |
| |
| xnn_caches caches = { |
| .code_cache = NULL, |
| .weights_cache = NULL, |
| }; |
| xnn_weights_cache weights_cache; |
| if (use_weights_cache()) { |
| xnn_init_weights_cache(&weights_cache); |
| caches.weights_cache = &weights_cache; |
| } |
| |
| const xnn_status status = xnn_create_fully_connected_nc_qs8( |
| input_channels(), output_channels(), |
| input_stride(), output_stride(), |
| input_zero_point, 1.0f /* input scale */, |
| 1.0f /* kernel scale */, |
| kernel.data(), has_bias() ? bias.data() : nullptr, |
| output_zero_point, output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, |
| &fully_connected_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, fully_connected_op); |
| if (use_weights_cache()) { |
| ASSERT_EQ(xnn_status_success, |
| xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft)); |
| } |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_qs8( |
| fully_connected_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| VerifyQS8(output, output_ref, double(output_zero_point)); |
| |
| if (use_weights_cache()) { |
| // Create another operator with the same weights cache. |
| xnn_operator_t fully_connected_op2 = nullptr; |
| size_t old_weights_cache_size = weights_cache.cache.weights.size; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_fully_connected_nc_qs8( |
| input_channels(), output_channels(), input_stride(), |
| output_stride(), input_zero_point, 1.0f /* input scale */, |
| 1.0f /* kernel scale */, kernel.data(), |
| has_bias() ? bias.data() : nullptr, output_zero_point, |
| output_scale, int8_t(qmin() - 0x80), |
| int8_t(qmax() - 0x80), |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, &fully_connected_op2)); |
| ASSERT_NE(nullptr, fully_connected_op2); |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> |
| auto_fully_connected_op(fully_connected_op2, xnn_delete_operator); |
| std::vector<int8_t> output2(output.size(), INT8_C(0xA5)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_qs8( |
| fully_connected_op2, |
| batch_size(), |
| input.data(), output2.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_run_operator(fully_connected_op2, nullptr /* thread pool */)); |
| |
| VerifyWeightsCache(weights_cache, old_weights_cache_size); |
| xnn_release_weights_cache(&weights_cache); |
| |
| VerifyQS8(output, output_ref, double(output_zero_point)); |
| } |
| } |
| } |
| |
| void VerifyQS8(const std::vector<int8_t>& output, |
| const std::vector<double>& output_ref, |
| double output_zero_point) const { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < output_channels(); c++) { |
| ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80)) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80)) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_NEAR(output_ref[i * output_channels() + c], |
| double(output[i * output_stride() + c]) - output_zero_point, |
| 0.9) |
| << "batch index = " << i << ", channel = " << c; |
| } |
| } |
| } |
| |
| void TestQU8() const { |
| ASSERT_EQ(weights_type(), WeightsType::Default); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i32dist(-10000, 10000); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + |
| (batch_size() - 1) * input_stride() + input_channels()); |
| std::vector<uint8_t> kernel(output_channels() * input_channels()); |
| std::vector<int32_t> bias(output_channels()); |
| std::vector<uint8_t> output((batch_size() - 1) * output_stride() + output_channels()); |
| std::vector<int32_t> accumulators(batch_size() * output_channels()); |
| std::vector<double> output_ref(batch_size() * output_channels()); |
| |
| const uint8_t input_zero_point = 127; |
| const uint8_t kernel_zero_point = 127; |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| // Compute reference results, without renormalization. |
| if (has_bias()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| accumulators[i * output_channels() + oc] = bias[oc]; |
| } |
| } |
| } else { |
| std::fill(accumulators.begin(), accumulators.end(), 0); |
| } |
| if (transpose_weights()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| accumulators[i * output_channels() + oc] += |
| (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * |
| (int32_t(kernel[ic * output_channels() + oc]) - int32_t(kernel_zero_point)); |
| } |
| } |
| } |
| } else { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| accumulators[i * output_channels() + oc] += |
| (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) * |
| (int32_t(kernel[oc * input_channels() + ic]) - int32_t(kernel_zero_point)); |
| } |
| } |
| } |
| } |
| |
| // Compute renormalization parameters. |
| const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); |
| const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); |
| |
| const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; |
| const uint8_t output_zero_point = uint8_t(std::max(std::min( |
| lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), |
| long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min()))); |
| |
| // Renormalize reference results. |
| std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), |
| [this, output_scale, output_zero_point](int32_t x) -> double { |
| return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); |
| }); |
| |
| // Create, setup, run, and destroy Fully Connected operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t fully_connected_op = nullptr; |
| |
| xnn_caches caches = { |
| .code_cache = NULL, |
| .weights_cache = NULL, |
| }; |
| xnn_weights_cache weights_cache; |
| if (use_weights_cache()) { |
| xnn_init_weights_cache(&weights_cache); |
| caches.weights_cache = &weights_cache; |
| } |
| |
| const xnn_status status = xnn_create_fully_connected_nc_qu8( |
| input_channels(), output_channels(), |
| input_stride(), output_stride(), |
| input_zero_point, 1.0f /* input scale */, |
| kernel_zero_point, 1.0f /* kernel scale */, |
| kernel.data(), has_bias() ? bias.data() : nullptr, |
| output_zero_point, output_scale, qmin(), qmax(), |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, |
| &fully_connected_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, fully_connected_op); |
| if (use_weights_cache()) { |
| ASSERT_EQ(xnn_status_success, |
| xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft)); |
| } |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_qu8( |
| fully_connected_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); |
| |
| VerifyQU8(output, output_ref, double(output_zero_point)); |
| |
| if (use_weights_cache()) { |
| // Create another operator with the same weights cache. |
| xnn_operator_t fully_connected_op2 = nullptr; |
| size_t old_weights_cache_size = weights_cache.cache.weights.size; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_fully_connected_nc_qu8( |
| input_channels(), output_channels(), input_stride(), |
| output_stride(), input_zero_point, 1.0f /* input scale */, |
| kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), |
| has_bias() ? bias.data() : nullptr, output_zero_point, |
| output_scale, qmin(), qmax(), |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, &fully_connected_op2)); |
| ASSERT_NE(nullptr, fully_connected_op2); |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> |
| auto_fully_connected_op(fully_connected_op2, xnn_delete_operator); |
| std::vector<uint8_t> output2(output.size(), UINT8_C(0xA5)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_qu8( |
| fully_connected_op2, batch_size(), input.data(), |
| output2.data(), nullptr /* thread pool */)); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_run_operator(fully_connected_op2, nullptr /* thread pool */)); |
| |
| VerifyWeightsCache(weights_cache, old_weights_cache_size); |
| xnn_release_weights_cache(&weights_cache); |
| |
| VerifyQU8(output2, output_ref, double(output_zero_point)); |
| } |
| |
| } |
| } |
| |
| void VerifyQU8(const std::vector<uint8_t>& output, |
| const std::vector<double>& output_ref, |
| double output_zero_point) const { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < output_channels(); c++) { |
| ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax())) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin())) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_NEAR(output_ref[i * output_channels() + c], |
| double(output[i * output_stride() + c]) - output_zero_point, |
| 0.9) |
| << "batch index = " << i << ", channel = " << c; |
| } |
| } |
| } |
| |
| void TestF32() const { |
| ASSERT_EQ(weights_type(), WeightsType::Default); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
| |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| (batch_size() - 1) * input_stride() + input_channels()); |
| std::vector<float> kernel(output_channels() * input_channels()); |
| std::vector<float> bias(output_channels()); |
| std::vector<float> output((batch_size() - 1) * output_stride() + output_channels()); |
| std::vector<float> output_ref(batch_size() * output_channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); |
| std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| // Compute reference results, without renormalization. |
| if (has_bias()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| output_ref[i * output_channels() + oc] = bias[oc]; |
| } |
| } |
| } else { |
| std::fill(output_ref.begin(), output_ref.end(), 0.0f); |
| } |
| if (transpose_weights()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| output_ref[i * output_channels() + oc] += |
| input[i * input_stride() + ic] * kernel[ic * output_channels() + oc]; |
| } |
| } |
| } |
| } else { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| output_ref[i * output_channels() + oc] += |
| input[i * input_stride() + ic] * kernel[oc * input_channels() + ic]; |
| } |
| } |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| |
| const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() : |
| accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); |
| const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() : |
| accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Create, setup, run, and destroy Fully Connected operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t fully_connected_op = nullptr; |
| |
| xnn_caches caches = { |
| .code_cache = NULL, |
| .weights_cache = NULL, |
| }; |
| xnn_weights_cache weights_cache; |
| if (use_weights_cache()) { |
| xnn_init_weights_cache(&weights_cache); |
| caches.weights_cache = &weights_cache; |
| } |
| |
| const xnn_status status = xnn_create_fully_connected_nc_f32( |
| input_channels(), output_channels(), |
| input_stride(), output_stride(), |
| kernel.data(), has_bias() ? bias.data() : nullptr, |
| output_min, output_max, |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, |
| &fully_connected_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, fully_connected_op); |
| if (use_weights_cache()) { |
| ASSERT_EQ(xnn_status_success, |
| xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft)); |
| } |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_f32( |
| fully_connected_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); |
| |
| VerifyF32(output, output_ref, output_max, output_min); |
| |
| if (use_weights_cache()) { |
| // Create another operator with the same weights cache. |
| xnn_operator_t fully_connected_op2 = nullptr; |
| size_t old_weights_cache_size = weights_cache.cache.weights.size; |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_fully_connected_nc_f32( |
| input_channels(), output_channels(), input_stride(), |
| output_stride(), kernel.data(), |
| has_bias() ? bias.data() : nullptr, output_min, |
| output_max, |
| transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0, |
| &caches, &fully_connected_op2)); |
| ASSERT_NE(nullptr, fully_connected_op2); |
| |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op2, xnn_delete_operator); |
| |
| std::vector<float> output2(output.size(), nanf("")); |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_f32( |
| fully_connected_op2, |
| batch_size(), |
| input.data(), output2.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op2, nullptr /* thread pool */)); |
| VerifyWeightsCache(weights_cache, old_weights_cache_size); |
| xnn_release_weights_cache(&weights_cache); |
| |
| VerifyF32(output, output_ref, output_max, output_min); |
| } |
| } |
| } |
| |
| void VerifyF32(const std::vector<float>& output, |
| const std::vector<float>& output_ref, |
| float output_max, |
| float output_min) const { |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < output_channels(); c++) { |
| ASSERT_LE(output[i * output_stride() + c], output_max) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_GE(output[i * output_stride() + c], output_min) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_NEAR(output_ref[i * output_channels() + c], |
| output[i * output_stride() + c], |
| 1.0e-4 * std::abs(output_ref[i * output_channels() + c])) |
| << "batch index = " << i << ", channel = " << c; |
| } |
| } |
| } |
| |
| void TestF16() const { |
| switch (weights_type()) { |
| case WeightsType::Default: |
| break; |
| case WeightsType::FP32: |
| break; |
| default: |
| GTEST_FAIL() << "unexpected weights type"; |
| } |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
| |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + |
| (batch_size() - 1) * input_stride() + input_channels()); |
| std::vector<uint16_t> kernel(output_channels() * input_channels()); |
| std::vector<float> kernel_as_float(kernel.size()); |
| std::vector<uint16_t> bias(output_channels()); |
| std::vector<float> bias_as_float(bias.size()); |
| std::vector<uint16_t> output((batch_size() - 1) * output_stride() + output_channels()); |
| std::vector<float> output_ref(batch_size() * output_channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::generate(kernel.begin(), kernel.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::transform(kernel.cbegin(), kernel.cend(), kernel_as_float.begin(), fp16_ieee_to_fp32_value); |
| std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::transform(bias.cbegin(), bias.cend(), bias_as_float.begin(), fp16_ieee_to_fp32_value); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results, without renormalization. |
| if (has_bias()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| output_ref[i * output_channels() + oc] = fp16_ieee_to_fp32_value(bias[oc]); |
| } |
| } |
| } else { |
| std::fill(output_ref.begin(), output_ref.end(), 0.0f); |
| } |
| if (transpose_weights()) { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| output_ref[i * output_channels() + oc] += |
| fp16_ieee_to_fp32_value(input[i * input_stride() + ic]) * fp16_ieee_to_fp32_value(kernel[ic * output_channels() + oc]); |
| } |
| } |
| } |
| } else { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| output_ref[i * output_channels() + oc] += |
| fp16_ieee_to_fp32_value(input[i * input_stride() + ic]) * fp16_ieee_to_fp32_value(kernel[oc * input_channels() + ic]); |
| } |
| } |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min; |
| const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max; |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Create, setup, run, and destroy Fully Connected operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t fully_connected_op = nullptr; |
| |
| xnn_caches caches = { |
| .code_cache = NULL, |
| .weights_cache = NULL, |
| }; |
| xnn_weights_cache weights_cache; |
| if (use_weights_cache()) { |
| xnn_init_weights_cache(&weights_cache); |
| caches.weights_cache = &weights_cache; |
| } |
| |
| const void* kernel_data = kernel.data(); |
| const void* bias_data = bias.data(); |
| if (weights_type() == WeightsType::FP32) { |
| kernel_data = kernel_as_float.data(); |
| bias_data = bias_as_float.data(); |
| } |
| uint32_t flags = 0; |
| if (transpose_weights()) { |
| flags |= XNN_FLAG_TRANSPOSE_WEIGHTS; |
| } |
| if (weights_type() == WeightsType::FP32) { |
| flags |= XNN_FLAG_FP32_STATIC_WEIGHTS; |
| } |
| const xnn_status status = xnn_create_fully_connected_nc_f16( |
| input_channels(), output_channels(), |
| input_stride(), output_stride(), |
| kernel_data, has_bias() ? bias_data : nullptr, |
| output_min, output_max, |
| flags, |
| &caches, |
| &fully_connected_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, fully_connected_op); |
| if (use_weights_cache()) { |
| ASSERT_EQ(xnn_status_success, |
| xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft)); |
| } |
| |
| // Smart pointer to automatically delete fully_connected_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_f16( |
| fully_connected_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| VerifyF16(output, output_ref, output_max, output_min); |
| |
| if (use_weights_cache()) { |
| xnn_operator_t fully_connected_op2 = nullptr; |
| size_t old_weights_cache_size = weights_cache.cache.weights.size; |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_fully_connected_nc_f16( |
| input_channels(), output_channels(), input_stride(), |
| output_stride(), kernel_data, |
| has_bias() ? bias_data : nullptr, output_min, output_max, |
| flags, &caches, &fully_connected_op2)); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, fully_connected_op2); |
| |
| // Smart pointer to automatically delete fully_connected_op2. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op2, xnn_delete_operator); |
| std::vector<uint16_t> output2(output.size(), UINT16_C(0x7E00) /* NaN */); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_fully_connected_nc_f16( |
| fully_connected_op2, |
| batch_size(), |
| input.data(), output2.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(fully_connected_op2, nullptr /* thread pool */)); |
| |
| // Verify results. |
| VerifyF16(output2, output_ref, output_max, output_min); |
| VerifyWeightsCache(weights_cache, old_weights_cache_size); |
| xnn_release_weights_cache(&weights_cache); |
| } |
| } |
| } |
| |
| void VerifyF16(const std::vector<uint16_t>& output, |
| const std::vector<float>& output_ref, |
| const float output_max, |
| const float output_min) const { |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < output_channels(); c++) { |
| ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min) |
| << "batch index = " << i << ", channel = " << c; |
| ASSERT_NEAR( |
| output_ref[i * output_channels() + c], |
| fp16_ieee_to_fp32_value(output[i * output_stride() + c]), |
| 1.0e-2f * std::abs(output_ref[i * output_channels() + c])) |
| << "batch index = " << i << ", channel = " << c; |
| } |
| } |
| } |
| |
| void VerifyWeightsCache(const xnn_weights_cache& weights_cache, size_t old_size) const { |
| ASSERT_EQ(weights_cache.cache.hits, 1); |
| // Ensure that we did not write more weights to the cache because it was a cache hit. |
| ASSERT_EQ(old_size, weights_cache.cache.weights.size); |
| }; |
| |
| private: |
| size_t input_channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_channels_{1}; |
| size_t output_stride_{0}; |
| size_t batch_size_{1}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| bool transpose_weights_{false}; |
| bool has_bias_{true}; |
| WeightsType weights_type_{WeightsType::Default}; |
| bool use_weights_cache_{false}; |
| size_t iterations_{1}; |
| }; |