| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| |
| |
| class GAvgPoolCWMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline GAvgPoolCWMicrokernelTester& elements(size_t elements) { |
| assert(elements != 0); |
| this->elements_ = elements; |
| return *this; |
| } |
| |
| inline size_t elements() const { |
| return this->elements_; |
| } |
| |
| inline GAvgPoolCWMicrokernelTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline GAvgPoolCWMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline GAvgPoolCWMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline GAvgPoolCWMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| |
| void Test(xnn_f32_gavgpool_cw_ukernel_function gavgpool, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<float> x(elements() * channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> y(channels()); |
| std::vector<float> y_ref(channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), [&]() { return f32dist(rng); }); |
| std::fill(y.begin(), y.end(), std::nanf("")); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < channels(); i++) { |
| float acc = 0.0f; |
| for (size_t j = 0; j < elements(); j++) { |
| acc += x[i * elements() + j]; |
| } |
| y_ref[i] = acc / float(elements()); |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; |
| const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; |
| |
| // Prepare parameters. |
| union xnn_f32_gavgpool_params params; |
| switch (variant) { |
| case Variant::Native: |
| xnn_init_f32_gavgpool_params( |
| ¶ms, 1.0f / float(elements()), y_min, y_max, elements()); |
| break; |
| case Variant::Scalar: |
| xnn_init_scalar_f32_gavgpool_params( |
| ¶ms, 1.0f / float(elements()), y_min, y_max, elements()); |
| break; |
| } |
| |
| // Clamp reference results. |
| for (float& y_value : y_ref) { |
| y_value = std::max(std::min(y_value, y_max), y_min); |
| } |
| |
| // Call optimized micro-kernel. |
| gavgpool(elements() * sizeof(float), channels(), x.data(), y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < channels(); i++) { |
| ASSERT_LE(y[i], y_max) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| ASSERT_GE(y[i], y_min) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| } |
| } |
| } |
| |
| void Test(xnn_f16_gavgpool_cw_ukernel_function gavgpool, xnn_init_f16_gavgpool_neonfp16arith_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(0.1f, 10.0f); |
| |
| std::vector<uint16_t> x(elements() * channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> y(channels()); |
| std::vector<float> y_ref(channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < channels(); i++) { |
| float acc = 0.0f; |
| for (size_t j = 0; j < elements(); j++) { |
| acc += fp16_ieee_to_fp32_value(x[i * elements() + j]); |
| } |
| y_ref[i] = acc / float(elements()); |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| |
| // Prepare parameters. |
| union xnn_f16_gavgpool_params params; |
| init_params( |
| ¶ms, fp16_ieee_from_fp32_value(1.0f / float(elements())), fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max), elements()); |
| |
| // Clamp reference results. |
| for (float& y_value : y_ref) { |
| y_value = std::max(std::min(y_value, y_max), y_min); |
| } |
| |
| // Call optimized micro-kernel. |
| gavgpool(elements() * sizeof(uint16_t), channels(), x.data(), y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < channels(); i++) { |
| ASSERT_LE(fp16_ieee_to_fp32_value(y[i]), y_max) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| ASSERT_GE(fp16_ieee_to_fp32_value(y[i]), y_min) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], 1.0e-2f * std::abs(y_ref[i])) |
| << "at position " << i << ", elements = " << elements() << ", channels = " << channels(); |
| } |
| } |
| } |
| |
| private: |
| size_t elements_{1}; |
| size_t channels_{1}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |