| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/math.h> |
| |
| |
| class IBilinearMicrokernelTester { |
| public: |
| inline IBilinearMicrokernelTester& pixels(uint32_t pixels) { |
| assert(pixels >= 1); |
| this->pixels_ = pixels; |
| return *this; |
| } |
| |
| inline uint32_t pixels() const { |
| return this->pixels_; |
| } |
| |
| inline IBilinearMicrokernelTester& channels(uint32_t channels) { |
| assert(channels >= 1); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline uint32_t channels() const { |
| return this->channels_; |
| } |
| |
| inline IBilinearMicrokernelTester& input_offset(uint32_t input_offset) { |
| this->input_offset_ = input_offset; |
| return *this; |
| } |
| |
| inline uint32_t input_offset() const { |
| return this->input_offset_; |
| } |
| |
| inline IBilinearMicrokernelTester& output_stride(uint32_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline uint32_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->output_stride_ >= channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline IBilinearMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| inline IBilinearMicrokernelTester& input_stride(uint32_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline uint32_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return 4 * pixels(); |
| } else { |
| assert(this->input_stride_ >= 4 * pixels()); |
| return this->input_stride_; |
| } |
| } |
| |
| void Test(xnn_f16_ibilinear_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
| |
| std::vector<const uint16_t*> indirection(pixels() * 4); |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + indirection.size() * channels()); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights(pixels() * 2); |
| std::vector<uint16_t> output((pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float alpha_h = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 0]); |
| const float alpha_v = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 1]); |
| output_ref[i * channels() + c] = |
| fp16_ieee_to_fp32_value(indirection[i * 4 + 0][c + input_offset()]) * (1.0f - alpha_h) * (1.0f - alpha_v) + |
| fp16_ieee_to_fp32_value(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (1.0f - alpha_v) + |
| fp16_ieee_to_fp32_value(indirection[i * 4 + 2][c + input_offset()]) * (1.0f - alpha_h) * alpha_v + |
| fp16_ieee_to_fp32_value(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels() * sizeof(uint16_t), |
| reinterpret_cast<const void**>(indirection.data()), input_offset() * sizeof(uint16_t), |
| packed_weights.data(), output.data(), |
| (output_stride() - channels()) * sizeof(uint16_t)); |
| |
| // Verify results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR( |
| fp16_ieee_to_fp32_value(output[i * output_stride() + c]), |
| output_ref[i * channels() + c], |
| std::abs(output_ref[i * channels() + c]) * 1.0e-2f) |
| << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_ibilinear_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirection(pixels() * 4); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); |
| std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2); |
| std::vector<float> output((pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float alpha_h = packed_weights[i * 2 + 0]; |
| const float alpha_v = packed_weights[i * 2 + 1]; |
| output_ref[i * channels() + c] = |
| indirection[i * 4 + 0][c + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + |
| indirection[i * 4 + 1][c + input_offset()] * alpha_h * (1.0f - alpha_v) + |
| indirection[i * 4 + 2][c + input_offset()] * (1.0f - alpha_h) * alpha_v + |
| indirection[i * 4 + 3][c + input_offset()] * alpha_h * alpha_v; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels() * sizeof(float), |
| indirection.data(), input_offset() * sizeof(float), |
| packed_weights.data(), output.data(), |
| (output_stride() - channels()) * sizeof(float)); |
| |
| // Verify results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR( |
| output_ref[i * channels() + c], |
| output[i * output_stride() + c], |
| std::abs(output_ref[i * channels() + c]) * 1.0e-4) |
| << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_s8_ibilinear_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| std::uniform_int_distribution<int16_t> w11dist(0, 2047); |
| |
| std::vector<const int8_t*> indirection(pixels() * 4); |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); |
| std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2); |
| std::vector<int8_t> output((pixels() - 1) * output_stride() + channels()); |
| std::vector<int8_t> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); }); |
| std::fill(output.begin(), output.end(), INT8_C(0xFA)); |
| |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const int32_t alpha_h = packed_weights[i * 2 + 0]; |
| const int32_t alpha_v = packed_weights[i * 2 + 1]; |
| const int32_t acc = math_asr_s32( |
| int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) + |
| int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) + |
| int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v + |
| int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v + |
| 2097152, 22); |
| ASSERT_GE(acc, std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(acc, std::numeric_limits<int8_t>::max()); |
| output_ref[i * channels() + c] = (int8_t) acc; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels() * sizeof(int8_t), |
| indirection.data(), input_offset() * sizeof(int8_t), |
| packed_weights.data(), output.data(), |
| (output_stride() - channels()) * sizeof(int8_t)); |
| |
| // Verify results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c])) |
| << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_u8_ibilinear_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| std::uniform_int_distribution<int16_t> w11dist(0, 2047); |
| |
| std::vector<const uint8_t*> indirection(pixels() * 4); |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels()); |
| std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2); |
| std::vector<uint8_t> output((pixels() - 1) * output_stride() + channels()); |
| std::vector<uint8_t> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); }); |
| std::fill(output.begin(), output.end(), UINT8_C(0xFA)); |
| |
| for (size_t i = 0; i < indirection.size(); i++) { |
| indirection[i] = input.data() + i * channels() - input_offset(); |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const uint32_t alpha_h = uint32_t(int32_t(packed_weights[i * 2 + 0])); |
| const uint32_t alpha_v = uint32_t(int32_t(packed_weights[i * 2 + 1])); |
| const uint32_t acc = (2097152 + |
| int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) + |
| int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) + |
| int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v + |
| int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v) >> 22; |
| ASSERT_LE(acc, std::numeric_limits<uint8_t>::max()); |
| output_ref[i * channels() + c] = (uint8_t) acc; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels() * sizeof(uint8_t), |
| indirection.data(), input_offset() * sizeof(uint8_t), |
| packed_weights.data(), output.data(), |
| (output_stride() - channels()) * sizeof(uint8_t)); |
| |
| // Verify results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c])) |
| << "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void TestCHW(xnn_f16_ibilinear_chw_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
| |
| std::vector<const uint16_t*> indirection(pixels() * 2); |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + (channels() - 1) * input_stride() + 4 * pixels()); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights(pixels() * 2); |
| std::vector<uint16_t> output(pixels() * channels()); |
| std::vector<float> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Indirection will point to the even ("left") pixels of the input. |
| // The kernels will expect "right" pixels to be placed right next to them. |
| for (size_t i = 0; i < indirection.size(); i++) { |
| const uint16_t* left_corner = input.data() + 2 * i - input_offset(); |
| indirection[i] = left_corner; |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float alpha_h = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 0]); |
| const float alpha_v = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 1]); |
| // `c * pixels() + i` because the output is NCHW. |
| output_ref[c * pixels() + i] = |
| // `c * indirection.size()` because the input is NCHW. |
| fp16_ieee_to_fp32_value((indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()]) * (1.0f - alpha_h) * (1.0f - alpha_v) + |
| fp16_ieee_to_fp32_value((indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()]) * alpha_h * (1.0f - alpha_v) + |
| fp16_ieee_to_fp32_value((indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()]) * (1.0f - alpha_h) * alpha_v + |
| fp16_ieee_to_fp32_value((indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()]) * alpha_h * alpha_v; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels(), |
| reinterpret_cast<const void**>(indirection.data()), input_offset() * sizeof(uint16_t), |
| packed_weights.data(), output.data(), input_stride() * sizeof(uint16_t)); |
| |
| // Verify results. |
| for (size_t c = 0; c < channels(); c++) { |
| for (size_t i = 0; i < pixels(); i++) { |
| ASSERT_NEAR( |
| fp16_ieee_to_fp32_value(output[c * pixels() + i]), |
| output_ref[c * pixels() + i], |
| std::abs(output_ref[c * pixels() + i]) * 1.0e-2f) |
| << "i = " << i << ", channel = " << c; |
| } |
| } |
| } |
| } |
| |
| void TestCHW(xnn_f32_ibilinear_chw_ukernel_function ibilinear) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist; |
| |
| std::vector<const float*> indirection(pixels() * 2); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + (channels() - 1) * input_stride() + 4 * pixels()); |
| std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2); |
| std::vector<float> output(pixels() * channels()); |
| std::vector<float> output_ref(pixels() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| // Indirection will point to the even ("left") pixels of the input. |
| // The kernels will expect "right" pixels to be placed right next to them. |
| for (size_t i = 0; i < indirection.size(); i++) { |
| const float* left_corner = input.data() + 2 * i - input_offset(); |
| indirection[i] = left_corner; |
| } |
| std::shuffle(indirection.begin(), indirection.end(), rng); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < pixels(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float alpha_h = packed_weights[i * 2 + 0]; |
| const float alpha_v = packed_weights[i * 2 + 1]; |
| // `c * pixels() + i` because the output is NCHW. |
| output_ref[c * pixels() + i] = |
| // `c * indirection.size()` because the input is NCHW. |
| (indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) + |
| (indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()] * alpha_h * (1.0f - alpha_v) + |
| (indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * alpha_v + |
| (indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()] * alpha_h * alpha_v; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| ibilinear( |
| pixels(), channels(), |
| indirection.data(), input_offset() * sizeof(float), |
| packed_weights.data(), output.data(), input_stride() * sizeof(float)); |
| |
| // Verify results. |
| for (size_t c = 0; c < channels(); c++) { |
| for (size_t i = 0; i < pixels(); i++) { |
| ASSERT_NEAR( |
| output_ref[c * pixels() + i], |
| output[c * pixels() + i], |
| std::abs(output_ref[c * pixels() + i]) * 1.0e-4) |
| << "i = " << i << ", channel = " << c; |
| } |
| } |
| } |
| } |
| |
| private: |
| uint32_t channels_{1}; |
| uint32_t pixels_{1}; |
| uint32_t output_stride_{0}; |
| uint32_t input_stride_{0}; |
| uint32_t input_offset_{0}; |
| size_t iterations_{3}; |
| }; |