blob: 0a9f48ab9e5701cd85dad9abdb84c0a9b3099a33 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/math.h>
class IBilinearMicrokernelTester {
public:
inline IBilinearMicrokernelTester& pixels(uint32_t pixels) {
assert(pixels >= 1);
this->pixels_ = pixels;
return *this;
}
inline uint32_t pixels() const {
return this->pixels_;
}
inline IBilinearMicrokernelTester& channels(uint32_t channels) {
assert(channels >= 1);
this->channels_ = channels;
return *this;
}
inline uint32_t channels() const {
return this->channels_;
}
inline IBilinearMicrokernelTester& input_offset(uint32_t input_offset) {
this->input_offset_ = input_offset;
return *this;
}
inline uint32_t input_offset() const {
return this->input_offset_;
}
inline IBilinearMicrokernelTester& output_stride(uint32_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline uint32_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
inline IBilinearMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
inline IBilinearMicrokernelTester& input_stride(uint32_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline uint32_t input_stride() const {
if (this->input_stride_ == 0) {
return 4 * pixels();
} else {
assert(this->input_stride_ >= 4 * pixels());
return this->input_stride_;
}
}
void Test(xnn_f16_ibilinear_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<const uint16_t*> indirection(pixels() * 4);
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + indirection.size() * channels());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights(pixels() * 2);
std::vector<uint16_t> output((pixels() - 1) * output_stride() + channels());
std::vector<float> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
for (size_t i = 0; i < indirection.size(); i++) {
indirection[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float alpha_h = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 0]);
const float alpha_v = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 1]);
output_ref[i * channels() + c] =
fp16_ieee_to_fp32_value(indirection[i * 4 + 0][c + input_offset()]) * (1.0f - alpha_h) * (1.0f - alpha_v) +
fp16_ieee_to_fp32_value(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (1.0f - alpha_v) +
fp16_ieee_to_fp32_value(indirection[i * 4 + 2][c + input_offset()]) * (1.0f - alpha_h) * alpha_v +
fp16_ieee_to_fp32_value(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels() * sizeof(uint16_t),
reinterpret_cast<const void**>(indirection.data()), input_offset() * sizeof(uint16_t),
packed_weights.data(), output.data(),
(output_stride() - channels()) * sizeof(uint16_t));
// Verify results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(
fp16_ieee_to_fp32_value(output[i * output_stride() + c]),
output_ref[i * channels() + c],
std::abs(output_ref[i * channels() + c]) * 1.0e-2f)
<< "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
}
}
}
}
void Test(xnn_f32_ibilinear_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist;
std::vector<const float*> indirection(pixels() * 4);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels());
std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2);
std::vector<float> output((pixels() - 1) * output_stride() + channels());
std::vector<float> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
for (size_t i = 0; i < indirection.size(); i++) {
indirection[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float alpha_h = packed_weights[i * 2 + 0];
const float alpha_v = packed_weights[i * 2 + 1];
output_ref[i * channels() + c] =
indirection[i * 4 + 0][c + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) +
indirection[i * 4 + 1][c + input_offset()] * alpha_h * (1.0f - alpha_v) +
indirection[i * 4 + 2][c + input_offset()] * (1.0f - alpha_h) * alpha_v +
indirection[i * 4 + 3][c + input_offset()] * alpha_h * alpha_v;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels() * sizeof(float),
indirection.data(), input_offset() * sizeof(float),
packed_weights.data(), output.data(),
(output_stride() - channels()) * sizeof(float));
// Verify results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(
output_ref[i * channels() + c],
output[i * output_stride() + c],
std::abs(output_ref[i * channels() + c]) * 1.0e-4)
<< "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
}
}
}
}
void Test(xnn_s8_ibilinear_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::uniform_int_distribution<int16_t> w11dist(0, 2047);
std::vector<const int8_t*> indirection(pixels() * 4);
std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels());
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2);
std::vector<int8_t> output((pixels() - 1) * output_stride() + channels());
std::vector<int8_t> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); });
std::fill(output.begin(), output.end(), INT8_C(0xFA));
for (size_t i = 0; i < indirection.size(); i++) {
indirection[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const int32_t alpha_h = packed_weights[i * 2 + 0];
const int32_t alpha_v = packed_weights[i * 2 + 1];
const int32_t acc = math_asr_s32(
int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) +
int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) +
int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v +
int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v +
2097152, 22);
ASSERT_GE(acc, std::numeric_limits<int8_t>::min());
ASSERT_LE(acc, std::numeric_limits<int8_t>::max());
output_ref[i * channels() + c] = (int8_t) acc;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels() * sizeof(int8_t),
indirection.data(), input_offset() * sizeof(int8_t),
packed_weights.data(), output.data(),
(output_stride() - channels()) * sizeof(int8_t));
// Verify results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c]))
<< "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
}
}
}
}
void Test(xnn_u8_ibilinear_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::uniform_int_distribution<int16_t> w11dist(0, 2047);
std::vector<const uint8_t*> indirection(pixels() * 4);
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels());
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_weights(pixels() * 2);
std::vector<uint8_t> output((pixels() - 1) * output_stride() + channels());
std::vector<uint8_t> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return w11dist(rng); });
std::fill(output.begin(), output.end(), UINT8_C(0xFA));
for (size_t i = 0; i < indirection.size(); i++) {
indirection[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t alpha_h = uint32_t(int32_t(packed_weights[i * 2 + 0]));
const uint32_t alpha_v = uint32_t(int32_t(packed_weights[i * 2 + 1]));
const uint32_t acc = (2097152 +
int32_t(indirection[i * 4 + 0][c + input_offset()]) * (2048 - alpha_h) * (2048 - alpha_v) +
int32_t(indirection[i * 4 + 1][c + input_offset()]) * alpha_h * (2048 - alpha_v) +
int32_t(indirection[i * 4 + 2][c + input_offset()]) * (2048 - alpha_h) * alpha_v +
int32_t(indirection[i * 4 + 3][c + input_offset()]) * alpha_h * alpha_v) >> 22;
ASSERT_LE(acc, std::numeric_limits<uint8_t>::max());
output_ref[i * channels() + c] = (uint8_t) acc;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels() * sizeof(uint8_t),
indirection.data(), input_offset() * sizeof(uint8_t),
packed_weights.data(), output.data(),
(output_stride() - channels()) * sizeof(uint8_t));
// Verify results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c]))
<< "pixel " << i << " / " << pixels() << ", channel " << c << " / " << channels();
}
}
}
}
void TestCHW(xnn_f16_ibilinear_chw_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<const uint16_t*> indirection(pixels() * 2);
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + (channels() - 1) * input_stride() + 4 * pixels());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights(pixels() * 2);
std::vector<uint16_t> output(pixels() * channels());
std::vector<float> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Indirection will point to the even ("left") pixels of the input.
// The kernels will expect "right" pixels to be placed right next to them.
for (size_t i = 0; i < indirection.size(); i++) {
const uint16_t* left_corner = input.data() + 2 * i - input_offset();
indirection[i] = left_corner;
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float alpha_h = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 0]);
const float alpha_v = fp16_ieee_to_fp32_value(packed_weights[i * 2 + 1]);
// `c * pixels() + i` because the output is NCHW.
output_ref[c * pixels() + i] =
// `c * indirection.size()` because the input is NCHW.
fp16_ieee_to_fp32_value((indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()]) * (1.0f - alpha_h) * (1.0f - alpha_v) +
fp16_ieee_to_fp32_value((indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()]) * alpha_h * (1.0f - alpha_v) +
fp16_ieee_to_fp32_value((indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()]) * (1.0f - alpha_h) * alpha_v +
fp16_ieee_to_fp32_value((indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()]) * alpha_h * alpha_v;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels(),
reinterpret_cast<const void**>(indirection.data()), input_offset() * sizeof(uint16_t),
packed_weights.data(), output.data(), input_stride() * sizeof(uint16_t));
// Verify results.
for (size_t c = 0; c < channels(); c++) {
for (size_t i = 0; i < pixels(); i++) {
ASSERT_NEAR(
fp16_ieee_to_fp32_value(output[c * pixels() + i]),
output_ref[c * pixels() + i],
std::abs(output_ref[c * pixels() + i]) * 1.0e-2f)
<< "i = " << i << ", channel = " << c;
}
}
}
}
void TestCHW(xnn_f32_ibilinear_chw_ukernel_function ibilinear) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist;
std::vector<const float*> indirection(pixels() * 2);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + (channels() - 1) * input_stride() + 4 * pixels());
std::vector<float, AlignedAllocator<float, 64>> packed_weights(pixels() * 2);
std::vector<float> output(pixels() * channels());
std::vector<float> output_ref(pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(packed_weights.begin(), packed_weights.end(), [&]() { return f32dist(rng); });
std::fill(output.begin(), output.end(), nanf(""));
// Indirection will point to the even ("left") pixels of the input.
// The kernels will expect "right" pixels to be placed right next to them.
for (size_t i = 0; i < indirection.size(); i++) {
const float* left_corner = input.data() + 2 * i - input_offset();
indirection[i] = left_corner;
}
std::shuffle(indirection.begin(), indirection.end(), rng);
// Compute reference results.
for (size_t i = 0; i < pixels(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float alpha_h = packed_weights[i * 2 + 0];
const float alpha_v = packed_weights[i * 2 + 1];
// `c * pixels() + i` because the output is NCHW.
output_ref[c * pixels() + i] =
// `c * indirection.size()` because the input is NCHW.
(indirection[i * 2 + 0] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * (1.0f - alpha_v) +
(indirection[i * 2 + 0] + 1)[c * input_stride() + input_offset()] * alpha_h * (1.0f - alpha_v) +
(indirection[i * 2 + 1] + 0)[c * input_stride() + input_offset()] * (1.0f - alpha_h) * alpha_v +
(indirection[i * 2 + 1] + 1)[c * input_stride() + input_offset()] * alpha_h * alpha_v;
}
}
// Call optimized micro-kernel.
ibilinear(
pixels(), channels(),
indirection.data(), input_offset() * sizeof(float),
packed_weights.data(), output.data(), input_stride() * sizeof(float));
// Verify results.
for (size_t c = 0; c < channels(); c++) {
for (size_t i = 0; i < pixels(); i++) {
ASSERT_NEAR(
output_ref[c * pixels() + i],
output[c * pixels() + i],
std::abs(output_ref[c * pixels() + i]) * 1.0e-4)
<< "i = " << i << ", channel = " << c;
}
}
}
}
private:
uint32_t channels_{1};
uint32_t pixels_{1};
uint32_t output_stride_{0};
uint32_t input_stride_{0};
uint32_t input_offset_{0};
size_t iterations_{3};
};