| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| static uint16_t flush_fp16_denormal_to_zero(uint16_t v) { |
| return (v & UINT16_C(0x7C00)) == 0 ? v & UINT16_C(0x8000) : v; |
| }; |
| |
| |
| class LeakyReLUOperatorTester { |
| public: |
| inline LeakyReLUOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline LeakyReLUOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->input_stride_ >= this->channels_); |
| return this->input_stride_; |
| } |
| } |
| |
| inline LeakyReLUOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->output_stride_ >= this->channels_); |
| return this->output_stride_; |
| } |
| } |
| |
| inline LeakyReLUOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline LeakyReLUOperatorTester& negative_slope(float negative_slope) { |
| assert(std::isnormal(negative_slope)); |
| this->negative_slope_ = negative_slope; |
| return *this; |
| } |
| |
| inline float negative_slope() const { |
| return this->negative_slope_; |
| } |
| |
| inline LeakyReLUOperatorTester& input_scale(float input_scale) { |
| assert(input_scale > 0.0f); |
| assert(std::isnormal(input_scale)); |
| this->input_scale_ = input_scale; |
| return *this; |
| } |
| |
| inline float input_scale() const { |
| return this->input_scale_; |
| } |
| |
| inline LeakyReLUOperatorTester& input_zero_point(int16_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline int16_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline LeakyReLUOperatorTester& output_scale(float output_scale) { |
| assert(output_scale > 0.0f); |
| assert(std::isnormal(output_scale)); |
| this->output_scale_ = output_scale; |
| return *this; |
| } |
| |
| inline float output_scale() const { |
| return this->output_scale_; |
| } |
| |
| inline LeakyReLUOperatorTester& output_zero_point(int16_t output_zero_point) { |
| this->output_zero_point_ = output_zero_point; |
| return *this; |
| } |
| |
| inline int16_t output_zero_point() const { |
| return this->output_zero_point_; |
| } |
| |
| inline LeakyReLUOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestF16() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f); |
| |
| std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + (batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { |
| return flush_fp16_denormal_to_zero(fp16_ieee_from_fp32_value(f32dist(rng))); |
| }); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| const uint16_t negative_slope_as_half = fp16_ieee_from_fp32_value(negative_slope()); |
| const float negative_slope_as_float = fp16_ieee_to_fp32_value(negative_slope_as_half); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]); |
| const float y = std::signbit(x) ? x * negative_slope_as_float : x; |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Leaky ReLU operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t leaky_relu_op = nullptr; |
| |
| const xnn_status status = xnn_create_leaky_relu_nc_f16( |
| channels(), input_stride(), output_stride(), |
| negative_slope(), |
| 0, &leaky_relu_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, leaky_relu_op); |
| |
| // Smart pointer to automatically delete leaky_relu_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_leaky_relu_op(leaky_relu_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_leaky_relu_nc_f16( |
| leaky_relu_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(leaky_relu_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR( |
| fp16_ieee_to_fp32_value(output[i * output_stride() + c]), |
| output_ref[i * channels() + c], |
| std::max(2.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-3f)) |
| << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void TestF32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f); |
| |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + (batch_size() - 1) * input_stride() + channels()); |
| std::vector<float> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input[i * input_stride() + c]; |
| const float y = std::signbit(x) ? x * negative_slope() : x; |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Leaky ReLU operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t leaky_relu_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_leaky_relu_nc_f32( |
| channels(), input_stride(), output_stride(), |
| negative_slope(), |
| 0, &leaky_relu_op)); |
| ASSERT_NE(nullptr, leaky_relu_op); |
| |
| // Smart pointer to automatically delete leaky_relu_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_leaky_relu_op(leaky_relu_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_leaky_relu_nc_f32( |
| leaky_relu_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(leaky_relu_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_EQ(output[i * output_stride() + c], output_ref[i * channels() + c]) |
| << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", input " << input[i * input_stride() + c] << ", negative slope " << negative_slope(); |
| } |
| } |
| } |
| } |
| |
| void TestQS8() const { |
| ASSERT_GE(input_zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(input_zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(output_zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(output_zero_point(), std::numeric_limits<int8_t>::max()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) + (batch_size() - 1) * input_stride() + channels()); |
| std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - input_zero_point()); |
| float y = (x < 0.0f ? x * negative_slope() : x) / output_scale() + float(output_zero_point()); |
| y = std::max<float>(y, std::numeric_limits<int8_t>::min()); |
| y = std::min<float>(y, std::numeric_limits<int8_t>::max()); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Leaky ReLU operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t leaky_relu_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_leaky_relu_nc_qs8( |
| channels(), input_stride(), output_stride(), |
| negative_slope(), |
| input_zero_point(), input_scale(), |
| output_zero_point(), output_scale(), |
| 0, &leaky_relu_op)); |
| ASSERT_NE(nullptr, leaky_relu_op); |
| |
| // Smart pointer to automatically delete leaky_relu_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_leaky_relu_op(leaky_relu_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_leaky_relu_nc_qs8( |
| leaky_relu_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(leaky_relu_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.9f) |
| << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", input " << int32_t(input[i * input_stride() + c]) |
| << ", input zero point " << input_zero_point() << ", output zero point " << output_zero_point() |
| << ", positive input-to-output ratio " << (input_scale() / output_scale()) |
| << ", negative input-to-output ratio " << (input_scale() / output_scale() * negative_slope()); |
| } |
| } |
| } |
| } |
| |
| void TestQU8() const { |
| ASSERT_GE(input_zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(input_zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(output_zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(output_zero_point(), std::numeric_limits<uint8_t>::max()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - input_zero_point()); |
| float y = (x < 0.0f ? x * negative_slope() : x) / output_scale() + float(output_zero_point()); |
| y = std::max<float>(y, std::numeric_limits<uint8_t>::min()); |
| y = std::min<float>(y, std::numeric_limits<uint8_t>::max()); |
| output_ref[i * channels() + c] = y; |
| } |
| } |
| |
| // Create, setup, run, and destroy Leaky ReLU operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t leaky_relu_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_leaky_relu_nc_qu8( |
| channels(), input_stride(), output_stride(), |
| negative_slope(), |
| input_zero_point(), input_scale(), |
| output_zero_point(), output_scale(), |
| 0, &leaky_relu_op)); |
| ASSERT_NE(nullptr, leaky_relu_op); |
| |
| // Smart pointer to automatically delete leaky_relu_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_leaky_relu_op(leaky_relu_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_leaky_relu_nc_qu8( |
| leaky_relu_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(leaky_relu_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.9f) |
| << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels() |
| << ", input " << int32_t(input[i * input_stride() + c]) |
| << ", input zero point " << input_zero_point() << ", output zero point " << output_zero_point() |
| << ", positive input-to-output ratio " << (input_scale() / output_scale()) |
| << ", negative input-to-output ratio " << (input_scale() / output_scale() * negative_slope()); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| float negative_slope_{0.3f}; |
| float output_scale_{0.75f}; |
| int16_t output_zero_point_{53}; |
| float input_scale_{1.25f}; |
| int16_t input_zero_point_{41}; |
| size_t iterations_{15}; |
| }; |