| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> // For std::generate, std::min. |
| #include <array> // For std::array. |
| #include <cmath> // For std::lrintf. |
| #include <cstddef> // For size_t. |
| #include <cstdint> // For uint32_t. |
| #include <limits> // For std::numeric_limits. |
| #include <memory> // For std::unique_ptr. |
| #include <random> // For std::random_device, std::mt19937, std::uniform_real_distribution. |
| #include <vector> // For std::vector. |
| |
| #include <xnnpack.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/requantization.h> |
| #include <xnnpack/subgraph.h> |
| |
| #include <gtest/gtest.h> |
| |
| template <class T> class MaxPooling2DTestBase : public ::testing::Test { |
| protected: |
| MaxPooling2DTestBase() |
| { |
| random_device = std::unique_ptr<std::random_device>(new std::random_device()); |
| rng = std::mt19937((*random_device)()); |
| input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15); |
| kernel_size_dist = std::uniform_int_distribution<uint32_t>(2, 5); |
| f32dist = std::uniform_real_distribution<float>(); |
| scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f); |
| i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000); |
| dilation_dist = std::uniform_int_distribution<uint32_t>(1, 2); |
| i8dist = |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| u8dist = |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| batch_size = input_size_dist(rng); |
| input_height = input_size_dist(rng); |
| input_width = input_size_dist(rng); |
| channels = input_size_dist(rng); |
| pooling_height = kernel_size_dist(rng); |
| pooling_width = kernel_size_dist(rng); |
| padding_top = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng); |
| padding_bottom = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng); |
| padding_left = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng); |
| padding_right = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng); |
| dilation_height = dilation_dist(rng); |
| dilation_width = dilation_height; |
| // stride dimension must be <= filter dimension |
| stride_height = std::uniform_int_distribution<uint32_t>(1, pooling_height)(rng); |
| stride_width = std::uniform_int_distribution<uint32_t>(1, pooling_width)(rng); |
| output_min = -std::numeric_limits<float>::infinity(); |
| output_max = std::numeric_limits<float>::infinity(); |
| output_height = xnn_compute_convolution_output_dimension( |
| padding_top + input_height + padding_bottom, pooling_height, dilation_height, stride_height); |
| output_width = xnn_compute_convolution_output_dimension( |
| padding_left + input_width + padding_right, pooling_width, dilation_width, stride_width); |
| |
| input_dims = {{batch_size, input_height, input_width, channels}}; |
| output_dims = {{batch_size, output_height, output_width, channels}}; |
| |
| input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * channels); |
| operator_output = |
| std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * output_height * output_width * channels); |
| subgraph_output = |
| std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * output_height * output_width * channels); |
| } |
| |
| std::unique_ptr<std::random_device> random_device; |
| std::mt19937 rng; |
| std::uniform_int_distribution<uint32_t> input_size_dist; |
| std::uniform_int_distribution<uint32_t> kernel_size_dist; |
| std::uniform_int_distribution<int32_t> i32dist; |
| std::uniform_real_distribution<float> f32dist; |
| std::uniform_real_distribution<float> scale_dist; |
| std::uniform_int_distribution<uint32_t> dilation_dist; |
| std::uniform_int_distribution<int32_t> i8dist; |
| std::uniform_int_distribution<int32_t> u8dist; |
| |
| uint32_t padding_top; |
| uint32_t padding_right; |
| uint32_t padding_bottom; |
| uint32_t padding_left; |
| uint32_t batch_size; |
| uint32_t input_height; |
| uint32_t input_width; |
| uint32_t pooling_height; |
| uint32_t pooling_width; |
| uint32_t stride_height; |
| uint32_t stride_width; |
| uint32_t dilation_height; |
| uint32_t dilation_width; |
| uint32_t channels; |
| float output_min; |
| float output_max; |
| uint32_t output_height; |
| uint32_t output_width; |
| |
| std::array<size_t, 4> input_dims; |
| std::array<size_t, 4> output_dims; |
| |
| std::vector<T> input; |
| std::vector<T> operator_output; |
| std::vector<T> subgraph_output; |
| }; |
| |
| using MaxPooling2DTestQS8 = MaxPooling2DTestBase<int8_t>; |
| using MaxPooling2DTestQU8 = MaxPooling2DTestBase<uint8_t>; |
| using MaxPooling2DTestF32 = MaxPooling2DTestBase<float>; |
| |
| TEST_F(MaxPooling2DTestQS8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, /*flags=*/0, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, /*flags=*/0, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); |
| ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); |
| ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); |
| ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); |
| ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); |
| ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
| ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
| ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); |
| ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); |
| ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(MaxPooling2DTestQU8, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, /*flags=*/0, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, /*flags=*/0, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); |
| ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); |
| ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); |
| ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); |
| ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); |
| ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
| ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
| ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); |
| ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); |
| ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(MaxPooling2DTestF32, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, /*flags=*/0, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, /*flags=*/0, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
| ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); |
| ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); |
| ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); |
| ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); |
| ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
| ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
| ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); |
| ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); |
| ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); |
| ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); |
| ASSERT_EQ(node->activation.output_min, output_min); |
| ASSERT_EQ(node->activation.output_max, output_max); |
| ASSERT_EQ(node->num_inputs, 1); |
| ASSERT_EQ(node->inputs[0], input_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(MaxPooling2DTestQS8, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); |
| const int8_t input_zero_point = i8dist(rng); |
| const float input_scale = scale_dist(rng); |
| const int8_t output_zero_point = input_zero_point; |
| const float output_scale = input_scale; |
| const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); |
| const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); |
| |
| // Call operator API. |
| xnn_operator_t op = nullptr; |
| const xnn_status status = xnn_create_max_pooling2d_nhwc_s8( |
| padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, channels, channels, channels, quantized_output_min, |
| quantized_output_max, /*flags=*/0, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_max_pooling2d_nhwc_s8( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), |
| input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), |
| output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { |
| ASSERT_EQ(subgraph_output[i], operator_output[i]); |
| } |
| } |
| |
| TEST_F(MaxPooling2DTestQU8, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); |
| const uint8_t input_zero_point = u8dist(rng); |
| const float input_scale = scale_dist(rng); |
| const uint8_t output_zero_point = input_zero_point; |
| const float output_scale = input_scale; |
| const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); |
| const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); |
| |
| // Call operator API. |
| xnn_operator_t op = nullptr; |
| const xnn_status status = xnn_create_max_pooling2d_nhwc_u8( |
| padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, channels, channels, channels, quantized_output_min, |
| quantized_output_max, /*flags=*/0, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_max_pooling2d_nhwc_u8( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), |
| input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_quantized_tensor_value( |
| subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), |
| output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { |
| ASSERT_EQ(subgraph_output[i], operator_output[i]); |
| } |
| } |
| |
| TEST_F(MaxPooling2DTestF32, matches_operator_api) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
| std::fill(operator_output.begin(), operator_output.end(), nanf("")); |
| std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); |
| |
| // Call operator API. |
| xnn_operator_t op = nullptr; |
| const xnn_status status = xnn_create_max_pooling2d_nhwc_f32( |
| padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, channels, channels, channels, output_min, output_max, /*flags=*/0, |
| &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, xnn_setup_max_pooling2d_nhwc_f32( |
| op, batch_size, input_height, input_width, input.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
| ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_define_max_pooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, |
| stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { |
| ASSERT_EQ(subgraph_output[i], operator_output[i]); |
| } |
| } |