blob: ac546bb73f58d1e1a1fee0554c1a89a82d10e5b8 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <numeric>
#include <xnnpack/pack.h>
#include <xnnpack/aligned-allocator.h>
#include <gtest/gtest.h>
#include <fp16.h>
TEST(PACK_QU8_DWCONV_GHW_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint8_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 48387);
std::vector<uint8_t> expected = {
// bias first
// 48387 + 0 - (2 + 3 + 4) * 127 = 47,244 = 0xB88C
0x8C, 0xB8, 0, 0,
// 48387 + 1 - (5 + 6 + 7) * 127 = 46,102 = 0xB416
0x16, 0xB4, 0, 0,
// then weights, channels first
2, 5,
3, 6,
4, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_GHW_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint8_t> k(c * h * w); // k = [
// 5, 6, 7,
// 8, 9, 10,
// 11, 12, 13,
// 14, 15, 16,
// 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 48387);
std::vector<uint8_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
// 48387 + 0 - (5 + 6 + 7) * 127 = 46,101 = 0xB415
0x15, 0xB4, 0, 0,
// 48387 + 1 - (8 + 9 + 10) * 127 = 44,959 = 0xAF9F
0x9F, 0xAF, 0, 0,
// then weights, channels first
5, 8, 6, 9, 7, 10,
// bias again
// 48387 + 2 - (11 + 12 + 13) * 127 = 43,817 = 0xAB29
0x29, 0xAB, 0, 0,
// 48387 + 3 - (14 + 15 + 16) * 127 = 42,675 = 0xA6B3
0xB3, 0xA6, 0, 0,
// then weights, channels first
11, 14, 12, 15, 13, 16,
// bias again
// 48387 + 4 - (17 + 18 + 19) * 127 = 41,533 = 0xA23D
0x3D, 0xA2, 0, 0,
0, 0, 0, 0,
// then weights, channels first
17, 0, 18, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_GHW_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint8_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 64516);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 64516 + 0 - (2 + 3 + 4 + 5) * 127 = 62,738 = 0xF512
0x12, 0xF5, 0, 0,
// 64516 + 1 - (6 + 7 + 8 + 9) * 127 = 60,707 = 0xED23
0x23, 0xED, 0, 0,
// then weights, channels first
2, 6,
// go down the columns first
4, 8, 3, 7, 5, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_GHW_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint8_t> k(c * h * w); // k = [
// 5, 6,
// 7, 8,
// 9, 10,
// 11, 12,
// 13, 14,
// 15, 16,
// 17, 18,
// 19, 20,
// 21, 22,
// 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 64516);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 64516 + 0 - (5 + 6 + 7 + 8) * 127 = 61,214 = 0xEF1E
0x1E, 0xEF, 0, 0,
// 64516 + 1 - (9 + 10 + 11 + 12) * 127 = 59,183 = 0xE72F
0x2F, 0xE7, 0, 0,
// then weights, channels first
5, 9,
// go down the columns first
7, 11,
6, 10,
8, 12,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
// 64516 + 2 - (13 + 14 + 15 + 16) * 127 = 57,152 = 0xDF40
0x40, 0xDF, 0, 0,
// 64516 + 3 - (17 + 18 + 19 + 20) * 127 = 55,121 = 0xD751
0x51, 0xD7, 0, 0,
// then weights, channels first
13, 17, 15, 19, 14, 18, 16, 20,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
// 64516 + 4 - (21 + 22 + 23 + 24) * 127 = 53,090 = 0xCF62
0x62, 0xCF, 0, 0,
0, 0, 0, 0,
// weights
21, 0, 23, 0, 22, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_HWG_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint8_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 48387);
std::vector<uint8_t> expected = {
// bias first
// 48387 + 0 - (2 + 4 + 6) * 127 = 46,863 = 0xB70F
0x0F, 0xB7, 0, 0,
// 48387 + 1 - (3 + 5 + 7) * 127 = 46,483 = 0xB593
0x93, 0xB5, 0, 0,
// then weights, channels first
2, 3,
4, 5,
6, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_HWG_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint8_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 48387);
std::vector<uint8_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
// 48387 + 0 - (5 + 10 + 15) * 127 = 44577 = 0xAE21
0x21, 0xAE, 0, 0,
// 48387 + 1 - (6 + 11 + 16) * 127 = 44197 = 0xACA5
0xA5, 0xAC, 0, 0,
// then weights, channels first
5, 6, 10, 11, 15, 16,
// bias again
// 48387 + 2 - (7, 12, 17) * 127 = 43817 = 0xAB29
0x29, 0xAB, 0, 0,
// 48387 + 3 - (8, 13, 18) * 127 = 43434 = 0xA9AD
0xAD, 0xA9, 0, 0,
// then weights, channels first
7, 8, 12, 13, 17, 18,
// bias again
// 48387 + 4 - (9, 14, 19) * 127 = 43053 = 0xA831
0x31, 0xA8, 0, 0,
0, 0, 0, 0,
// then weights, channels first
9, 0, 14, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_HWG_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint8_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 64516);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 64516 + 0 - (2 + 4 + 6 + 8) * 127 = 61976 = 0xF218
0x18, 0xF2, 0, 0,
// 64516 + 1 - (3 + 5 + 7 + 9) * 127 = 61469 = 0xF01D
0x1D, 0xF0, 0, 0,
// then weights, channels first
2, 3,
// go down the columns first
6, 7, 4, 5, 8, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QU8_DWCONV_HWG_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint8_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qu8_packing_params params = {
.input_zero_point = 127,
.kernel_zero_point = 127,
};
xnn_pack_qu8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
const int32_t bias_offset = h * w * params.input_zero_point * params.kernel_zero_point;
ASSERT_EQ(bias_offset, 64516);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 64516 + 0 - (5 + 10 + 15 + 20) * 127 = 58166 = 0xE336
0x36, 0xE3, 0, 0,
// 64516 + 1 - (6 + 11 + 16 + 21) * 127 = 57659 = 0xE13B
0x3B, 0xE1, 0, 0,
// then weights, channels first
5, 6,
// go down the columns first
15, 16,
10, 11,
20, 21,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
// 64516 + 2 - (7 + 12 + 17 + 22) * 127 = 57152 = 0xDF40
0x40, 0xDF, 0, 0,
// 64516 + 3 - (8 + 13 + 18 + 23) * 127 = 56645 = 0xDD45
0x45, 0xDD, 0, 0,
// then weights, channels first
7, 8, 17, 18, 12, 13, 22, 23,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
// 64516 + 4 - (9 + 14 + 19 + 24) * 127 = 56138 = 0xDB4A
0x4A, 0xDB, 0, 0,
0, 0, 0, 0,
// weights
9, 0, 19, 0, 14, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_GHW_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<int8_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first
// (2 + 3 + 4) * 127 = -1143 = 0xFFFFFB89
0x89, 0xFB, 0xFF, 0xFF,
// (5 + 6 + 7) * 127 = -2285 = 0xFFFFF713
0x13, 0xF7, 0xFF, 0xFF,
// then weights, channels first
2, 5,
3, 6,
4, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_GHW_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<int8_t> k(c * h * w); // k = [
// 5, 6, 7,
// 8, 9, 10,
// 11, 12, 13,
// 14, 15, 16,
// 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
// 0 - (5 + 6 + 7) * 127 = -2286 = 0xFFFFF712
0x12, 0xF7, 0xFF, 0xFF,
// 1 - (8 + 9 + 10) * 127 = -3428 = 0xFFFFF29C
0x9C, 0xF2, 0xFF, 0xFF,
// then weights, channels first
5, 8, 6, 9, 7, 10,
// bias again
// 2 - (11 + 12 + 13) * 127 = -4570 = 0xFFFFEE26
0x26, 0xEE, 0xFF, 0xFF,
// 3 - (14 + 15 + 16) * 127 = -5712 = 0xFFFFE9B0
0xB0, 0xE9, 0xFF, 0xFF,
// then weights, channels first
11, 14, 12, 15, 13, 16,
// bias again
// 4 - (17 + 18 + 19) * 127 = -6854 = 0xFFFFE53A
0x3A, 0xE5, 0xFF, 0xFF,
0, 0, 0, 0,
// then weights, channels first
17, 0, 18, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_GHW_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<int8_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 0 - (2 + 3 + 4 + 5) * 127 = -1778 = 0xFFFFF90E
0x0E, 0xF9, 0xFF, 0xFF,
// 1 - (6 + 7 + 8 + 9) * 127 = -3809 = 0xFFFFF11F
0x1F, 0xF1, 0xFF, 0xFF,
// then weights, channels first
2, 6,
// go down the columns first
4, 8, 3, 7, 5, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_GHW_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<int8_t> k(c * h * w); // k = [
// 5, 6,
// 7, 8,
// 9, 10,
// 11, 12,
// 13, 14,
// 15, 16,
// 17, 18,
// 19, 20,
// 21, 22,
// 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 0 - (5 + 6 + 7 + 8) * 127 = -3302 = 0xFFFFF31A
0x1A, 0xF3, 0xFF, 0xFF,
// 1 - (9 + 10 + 11 + 12) * 127 = -5333 = 0xFFFFEB2B
0x2B, 0xEB, 0xFF, 0xFF,
// then weights, channels first
5, 9,
// go down the columns first
7, 11,
6, 10,
8, 12,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
// 2 - (13 + 14 + 15 + 16) * 127 = -7364 = 0xFFFFE33C
0x3C, 0xE3, 0xFF, 0xFF,
// 3 - (17 + 18 + 19 + 20) * 127 = -9395 = 0xFFFFDB4D
0x4D, 0xDB, 0xFF, 0xFF,
// then weights, channels first
13, 17, 15, 19, 14, 18, 16, 20,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
// 4 - (21 + 22 + 23 + 24) * 127 = -11426 = 0xFFFFD35E
0x5E, 0xD3, 0xFF, 0xFF,
0, 0, 0, 0,
// weights
21, 0, 23, 0, 22, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_HWG_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<int8_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first
// 0 - (2 + 4 + 6) * 127 = -1524 = 0xFFFFFA0C
0x0C, 0xFA, 0xFF, 0xFF,
// 1 - (3 + 5 + 7) * 127 = -1904 = 0xFFFFF890
0x90, 0xF8, 0xFF, 0xFF,
// then weights, channels first
2, 3,
4, 5,
6, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_HWG_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<int8_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
// 0 - (5 + 10 + 15) * 127 = -3810 = 0xFFFFF11E
0x1E, 0xF1, 0xFF, 0xFF,
// 1 - (6 + 11 + 16) * 127 = -4190 = 0xFFFFEFA2
0xA2, 0xEF, 0xFF, 0xFF,
// then weights, channels first
5, 6, 10, 11, 15, 16,
// bias again
// 2 - (7, 12, 17) * 127 = -45709 = 0xFFFFEE26
0x26, 0xEE, 0xFF, 0xFF,
// 3 - (8, 13, 18) * 127 = -4950 = 0xFFFFECAA
0xAA, 0xEC, 0xFF, 0xFF,
// then weights, channels first
7, 8, 12, 13, 17, 18,
// bias again
// 4 - (9, 14, 19) * 127 = -5330 = 0xFFFFEB2E
0x2E, 0xEB, 0xFF, 0xFF,
0, 0, 0, 0,
// then weights, channels first
9, 0, 14, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_HWG_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<int8_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 0 - (2 + 4 + 6 + 8) * 127 = -2540 = 0xFFFFF614
0x14, 0xF6, 0xFF, 0xFF,
// 1 - (3 + 5 + 7 + 9) * 127 = -3047 = 0xFFFFF419
0x19, 0xF4, 0xFF, 0xFF,
// then weights, channels first
2, 3,
// go down the columns first
6, 7, 4, 5, 8, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_QS8_DWCONV_HWG_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<int32_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<int8_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint8_t> packed_weights(((primary_tile + sizeof(int32_t)/sizeof(uint8_t)) * round_up_po2(c, cr)));
xnn_qs8_packing_params params = {
.input_zero_point = 127,
};
xnn_pack_qs8_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
&params);
std::vector<uint8_t> expected = {
// bias first (cr == 2 of them)
// 0 - (5 + 10 + 15 + 20) * 127 = -6350 = 0xFFFFE732
0x32, 0xE7, 0xFF, 0xFF,
// 1 - (6 + 11 + 16 + 21) * 127 = -6857 = 0xFFFFE537
0x37, 0xE5, 0xFF, 0xFF,
// then weights, channels first
5, 6,
// go down the columns first
15, 16,
10, 11,
20, 21,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
// 2 - (7 + 12 + 17 + 22) * 127 = -7364 = 0xFFFFE33C
0x3C, 0xE3, 0xFF, 0xFF,
// 3 - (8 + 13 + 18 + 23) * 127 = -7871 = 0xFFFFE141
0x41, 0xE1, 0xFF, 0xFF,
// then weights, channels first
7, 8, 17, 18, 12, 13, 22, 23,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
// 4 - (9 + 14 + 19 + 24) * 127 = -8378 = 0xFFFFDF46
0x46, 0xDF, 0xFF, 0xFF,
0, 0, 0, 0,
// weights
9, 0, 19, 0, 14, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_GHW_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint16_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first
0, 1,
// then weights, channels first
2, 5,
3, 6,
4, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_GHW_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint16_t> k(c * h * w); // k = [
// 5, 6, 7,
// 8, 9, 10,
// 11, 12, 13,
// 14, 15, 16,
// 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
5, 8, 6, 9, 7, 10,
// bias again
2, 3,
// then weights, channels first
11, 14, 12, 15, 13, 16,
// bias again
4, 0,
// then weights, channels first
17, 0, 18, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_GHW_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint16_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
2, 6,
// go down the columns first
4, 8, 3, 7, 5, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_GHW_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint16_t> k(c * h * w); // k = [
// 5, 6,
// 7, 8,
// 9, 10,
// 11, 12,
// 13, 14,
// 15, 16,
// 17, 18,
// 19, 20,
// 21, 22,
// 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
5, 9,
// go down the columns first
7, 11,
6, 10,
8, 12,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
2, 3,
// then weights, channels first
13, 17, 15, 19, 14, 18, 16, 20,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
4, 0,
// weights
21, 0, 23, 0, 22, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_HWG_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint16_t> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first
0, 1,
// then weights, channels first
2, 3,
4, 5,
6, 7,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_HWG_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint16_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// cr blocks
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
5, 6, 10, 11, 15, 16,
// bias again
2, 3,
// then weights, channels first
7, 8, 12, 13, 17, 18,
// bias again
4, 0,
// then weights, channels first
9, 0, 14, 0, 19, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_HWG_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<uint16_t> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
2, 3,
// go down the columns first
6, 7, 4, 5, 8, 9,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F16_DWCONV_HWG_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<uint16_t> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<uint16_t> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<uint16_t> expected = {
// bias first (cr == 2 of them)
0, 1,
// then weights, channels first
5, 6,
// go down the columns first
15, 16,
10, 11,
20, 21,
// followed by 10 zeros to make up the difference with primary_tile
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias first (cr == 2 of them)
2, 3,
// then weights, channels first
7, 8, 17, 18, 12, 13, 22, 23,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// bias
4, 0,
// weights
9, 0, 19, 0, 14, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_GHW_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first
0.0f, 1.0f,
// then weights, channels first
2.0f, 5.0f,
3.0f, 6.0f,
4.0f, 7.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_GHW_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7,
// 8, 9, 10,
// 11, 12, 13,
// 14, 15, 16,
// 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// cr blocks
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 8.0f, 6.0f, 9.0f, 7.0f, 10.0f,
// bias again
2.0f, 3.0f,
// then weights, channels first
11.0f, 14.0f, 12.0f, 15.0f, 13.0f, 16.0f,
// bias again
4.0f, 0.0f,
// then weights, channels first
17.0f, 0.0f, 18.0f, 0.0f, 19.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_GHW_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
2.0f, 6.0f,
// go down the columns first
4.0f, 8.0f, 3.0f, 7.0f, 5.0f, 9.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_GHW_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6,
// 7, 8,
// 9, 10,
// 11, 12,
// 13, 14,
// 15, 16,
// 17, 18,
// 19, 20,
// 21, 22,
// 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 9.0f,
// go down the columns first
7.0f, 11.0f,
6.0f, 10.0f,
8.0f, 12.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias first (cr == 2 of them)
2.0f, 3.0f,
// then weights, channels first
13.0f, 17.0f, 15.0f, 19.0f, 14.0f, 18.0f, 16.0f, 20.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias
4.0f, 0.0f,
// weights
21.0f, 0.0f, 23.0f, 0.0f, 22.0f, 0.0f, 24.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_HWG_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first
0.0f, 1.0f,
// then weights, channels first
2.0f, 3.0f,
4.0f, 5.0f,
6.0f, 7.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_HWG_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// cr blocks
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 6.0f, 10.0f, 11.0f, 15.0f, 16.0f,
// bias again
2.0f, 3.0f,
// then weights, channels first
7.0f, 8.0f, 12.0f, 13.0f, 17.0f, 18.0f,
// bias again
4.0f, 0.0f,
// then weights, channels first
9.0f, 0.0f, 14.0f, 0.0f, 19.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_HWG_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
2.0f, 3.0f,
// go down the columns first
6.0f, 7.0f, 4.0f, 5.0f, 8.0f, 9.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_DWCONV_HWG_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<float> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 6.0f,
// go down the columns first
15.0f, 16.0f,
10.0f, 11.0f,
20.0f, 21.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias first (cr == 2 of them)
2.0f, 3.0f,
// then weights, channels first
7.0f, 8.0f, 17.0f, 18.0f, 12.0f, 13.0f, 22.0f, 23.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias
4.0f, 0.0f,
// weights
9.0f, 0.0f, 19.0f, 0.0f, 14.0f, 0.0f, 24.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_GHW_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first
0.0f, 1.0f,
// then weights, channels first
2.0f, 5.0f,
3.0f, 6.0f,
4.0f, 7.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_GHW_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7,
// 8, 9, 10,
// 11, 12, 13,
// 14, 15, 16,
// 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// cr blocks
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 8.0f, 6.0f, 9.0f, 7.0f, 10.0f,
// bias again
2.0f, 3.0f,
// then weights, channels first
11.0f, 14.0f, 12.0f, 15.0f, 13.0f, 16.0f,
// bias again
4.0f, 0.0f,
// then weights, channels first
17.0f, 0.0f, 18.0f, 0.0f, 19.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_GHW_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
2.0f, 6.0f,
// go down the columns first
4.0f, 8.0f, 3.0f, 7.0f, 5.0f, 9.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_GHW_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6,
// 7, 8,
// 9, 10,
// 11, 12,
// 13, 14,
// 15, 16,
// 17, 18,
// 19, 20,
// 21, 22,
// 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_ghw_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 9.0f,
// go down the columns first
7.0f, 11.0f,
6.0f, 10.0f,
8.0f, 12.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias first (cr == 2 of them)
2.0f, 3.0f,
// then weights, channels first
13.0f, 17.0f, 15.0f, 19.0f, 14.0f, 18.0f, 16.0f, 20.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias
4.0f, 0.0f,
// weights
21.0f, 0.0f, 23.0f, 0.0f, 22.0f, 0.0f, 24.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_HWG_W, primary_tile_eq_kernel_size) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [2, 3, 4, 5, 6, 7]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first
0.0f, 1.0f,
// then weights, channels first
2.0f, 3.0f,
4.0f, 5.0f,
6.0f, 7.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_HWG_W, primary_tile_eq_kernel_size_channels_gt_cr) {
size_t primary_tile = 3;
size_t h = 3;
size_t w = 1;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// cr blocks
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 6.0f, 10.0f, 11.0f, 15.0f, 16.0f,
// bias again
2.0f, 3.0f,
// then weights, channels first
7.0f, 8.0f, 12.0f, 13.0f, 17.0f, 18.0f,
// bias again
4.0f, 0.0f,
// then weights, channels first
9.0f, 0.0f, 14.0f, 0.0f, 19.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_HWG_W, primary_tile_gt_kernel_size) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 2;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1]
std::vector<float> k(c * h * w); // k = [
// 2, 3,
// 4, 5,
// 6, 7,
// 8, 9]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
2.0f, 3.0f,
// go down the columns first
6.0f, 7.0f, 4.0f, 5.0f, 8.0f, 9.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}
TEST(PACK_F32_TO_F16_DWCONV_HWG_W, primary_tile_gt_kernel_size_channels_gt_cr) {
size_t primary_tile = 9;
size_t h = 2;
size_t w = 2;
size_t c = 5;
size_t cr = 2;
std::vector<float> b(c);
std::iota(b.begin(), b.end(), 0); // b = [0, 1, 2, 3, 4]
std::vector<float> k(c * h * w); // k = [
// 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14,
// 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24]
std::iota(k.begin(), k.end(), b.size());
std::vector<uint16_t> packed_weights(((primary_tile + 1) * round_up_po2(c, cr)));
xnn_pack_f32_to_f16_dwconv_hwg_w(
primary_tile,
h,
w,
c,
cr,
k.data(),
b.data(),
packed_weights.data(),
0,
nullptr);
std::vector<float> expected_float = {
// bias first (cr == 2 of them)
0.0f, 1.0f,
// then weights, channels first
5.0f, 6.0f,
// go down the columns first
15.0f, 16.0f,
10.0f, 11.0f,
20.0f, 21.0f,
// followed by 10 zeros to make up the difference with primary_tile
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias first (cr == 2 of them)
2.0f, 3.0f,
// then weights, channels first
7.0f, 8.0f, 17.0f, 18.0f, 12.0f, 13.0f, 22.0f, 23.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
// bias
4.0f, 0.0f,
// weights
9.0f, 0.0f, 19.0f, 0.0f, 14.0f, 0.0f, 24.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
};
std::vector<uint16_t> expected(expected_float.size());
std::transform(expected_float.begin(), expected_float.end(), expected.begin(),
[](float f) { return fp16_ieee_from_fp32_value(f); });
ASSERT_EQ(expected, packed_weights);
}