blob: 21418375b44aaffb2e35e4712013d1a94390f974 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/microfnptr.h>
class PReLUMicrokernelTester {
public:
inline PReLUMicrokernelTester& rows(size_t rows) {
assert(rows != 0);
this->rows_ = rows;
return *this;
}
inline size_t rows() const {
return this->rows_;
}
inline PReLUMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline PReLUMicrokernelTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return channels();
} else {
assert(this->input_stride_ >= channels());
return this->input_stride_;
}
}
inline PReLUMicrokernelTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
inline PReLUMicrokernelTester& inplace(bool inplace) {
this->inplace_ = inplace;
return *this;
}
inline bool inplace() const {
return this->inplace_;
}
inline PReLUMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f16_prelu_ukernel_function prelu) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::uniform_real_distribution<float> w32dist(0.25f, 0.75f);
std::vector<uint16_t> x(channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> y(channels() + (rows() - 1) * output_stride() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<float> y_ref(channels() * rows());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
std::generate(w.begin(), w.end(), [&]() { return fp16_ieee_from_fp32_value(w32dist(rng)); });
if (inplace()) {
std::generate(y.begin(), y.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
} else {
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
}
const uint16_t* x_data = inplace() ? y.data() : x.data();
// Compute reference results, without clamping.
for (size_t n = 0; n < rows(); n++) {
for (size_t c = 0; c < channels(); c++) {
const float x_value = fp16_ieee_to_fp32_value(x_data[n * input_stride() + c]);
y_ref[n * channels() + c] = std::signbit(x_value) ?
fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(x_value * fp16_ieee_to_fp32_value(w[c]))) : x_value;
}
}
// Call optimized micro-kernel.
prelu(rows(), channels() * sizeof(uint16_t),
x_data, input_stride() * sizeof(uint16_t),
w.data(),
y.data(), output_stride() * sizeof(uint16_t));
// Verify results.
for (size_t n = 0; n < rows(); n++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(fp16_ieee_to_fp32_value(y[n * output_stride() + c]), y_ref[n * channels() + c])
<< "at row " << n << " / " << rows()
<< ", channel " << c << " / " << channels();
}
}
}
}
void Test(xnn_f32_prelu_ukernel_function prelu) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
std::uniform_real_distribution<float> w32dist(0.25f, 0.75f);
std::vector<float> x(channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float, AlignedAllocator<float, 64>> w(channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y(channels() + (rows() - 1) * output_stride() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y_ref(channels() * rows());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), [&]() { return f32dist(rng); });
std::generate(w.begin(), w.end(), [&]() { return w32dist(rng); });
if (inplace()) {
std::generate(y.begin(), y.end(), [&]() { return f32dist(rng); });
} else {
std::fill(y.begin(), y.end(), nanf(""));
}
const float* x_data = inplace() ? y.data() : x.data();
// Compute reference results, without clamping.
for (size_t n = 0; n < rows(); n++) {
for (size_t c = 0; c < channels(); c++) {
const float x_value = x_data[n * input_stride() + c];
y_ref[n * channels() + c] = std::signbit(x_value) ? x_value * w[c] : x_value;
}
}
// Call optimized micro-kernel.
prelu(rows(), channels() * sizeof(float),
x_data, input_stride() * sizeof(float),
w.data(),
y.data(), output_stride() * sizeof(float));
// Verify results.
for (size_t n = 0; n < rows(); n++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_EQ(y[n * output_stride() + c], y_ref[n * channels() + c])
<< "at row " << n << " / " << rows()
<< ", channel " << c << " / " << channels();
}
}
}
}
private:
size_t rows_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
bool inplace_{false};
size_t iterations_{15};
};