blob: 56da4d9aadd3d808f05f29f16ecc97596def3233 [file] [log] [blame] [edit]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <fp16.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <xnnpack/cache.h>
class PReLUOperatorTester {
public:
enum class WeightsType {
Default,
FP32,
};
inline PReLUOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline PReLUOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline PReLUOperatorTester& x_stride(size_t x_stride) {
assert(x_stride != 0);
this->x_stride_ = x_stride;
return *this;
}
inline size_t x_stride() const {
if (this->x_stride_ == 0) {
return this->channels_;
} else {
assert(this->x_stride_ >= this->channels_);
return this->x_stride_;
}
}
inline PReLUOperatorTester& y_stride(size_t y_stride) {
assert(y_stride != 0);
this->y_stride_ = y_stride;
return *this;
}
inline size_t y_stride() const {
if (this->y_stride_ == 0) {
return this->channels_;
} else {
assert(this->y_stride_ >= this->channels_);
return this->y_stride_;
}
}
inline PReLUOperatorTester& weights_type(WeightsType weights_type) {
this->weights_type_ = weights_type;
return *this;
}
inline WeightsType weights_type() const {
return this->weights_type_;
}
inline PReLUOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
inline PReLUOperatorTester& use_weights_cache(bool use_weights_cache) {
this->use_weights_cache_ = use_weights_cache;
return *this;
}
inline bool use_weights_cache() const {
return this->use_weights_cache_;
}
void TestF16() const {
switch (weights_type()) {
case WeightsType::Default:
break;
case WeightsType::FP32:
break;
default:
GTEST_FAIL() << "unexpected weights type";
}
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32irng = std::uniform_real_distribution<float>(-1.0f, 1.0f);
auto f32wrng = std::uniform_real_distribution<float>(0.25f, 0.75f);
std::vector<uint16_t> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> w(channels());
std::vector<float> w_as_float(channels());
std::vector<uint16_t> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<float> y_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), [&] { return fp16_ieee_from_fp32_value(f32irng(rng)); });
std::generate(w.begin(), w.end(), [&] { return fp16_ieee_from_fp32_value(f32wrng(rng)); });
std::transform(w.cbegin(), w.cend(), w_as_float.begin(), fp16_ieee_to_fp32_value);
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float x_value = fp16_ieee_to_fp32_value(x[i * x_stride() + c]);
const float w_value = w_as_float[c];
y_ref[i * channels() + c] = std::signbit(x_value) ? x_value * w_value : x_value;
}
}
// Create, setup, run, and destroy PReLU operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t prelu_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
const void* negative_slope_data = w.data();
if (weights_type() == WeightsType::FP32) {
negative_slope_data = w_as_float.data();
}
uint32_t flags = 0;
if (weights_type() == WeightsType::FP32) {
flags |= XNN_FLAG_FP32_STATIC_WEIGHTS;
}
ASSERT_EQ(xnn_status_success,
xnn_create_prelu_nc_f16(
channels(), x_stride(), y_stride(),
negative_slope_data,
flags, &caches, &prelu_op));
ASSERT_NE(nullptr, prelu_op);
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete prelu_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_prelu_nc_f16(
prelu_op,
batch_size(),
x.data(), y.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(prelu_op, nullptr /* thread pool */));
VerifyF16(y, y_ref);
if (use_weights_cache()) {
xnn_operator_t prelu_op2 = nullptr;
const size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(xnn_status_success,
xnn_create_prelu_nc_f16(
channels(), x_stride(), y_stride(),
negative_slope_data,
flags, &caches, &prelu_op2));
ASSERT_NE(nullptr, prelu_op2);
// Smart pointer to automatically delete prelu_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op2, xnn_delete_operator);
std::vector<uint16_t> y2(y.size(), UINT16_C(0x7E00) /* NaN */);
ASSERT_EQ(xnn_status_success,
xnn_setup_prelu_nc_f16(
prelu_op2,
batch_size(),
x.data(), y2.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(prelu_op2, nullptr /* thread pool */));
VerifyF16(y2, y_ref);
VerifyWeightsCache(weights_cache, old_weights_cache_size);
xnn_release_weights_cache(&weights_cache);
}
}
}
void VerifyF16(const std::vector<uint16_t>& y, const std::vector<float>& y_ref) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(
fp16_ieee_to_fp32_value(y[i * y_stride() + c]),
y_ref[i * channels() + c],
std::max(1.0e-4f, std::abs(y_ref[i * channels() + c]) * 1.0e-3f))
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
void TestF32() const {
ASSERT_EQ(weights_type(), WeightsType::Default);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32irng = std::uniform_real_distribution<float>(-1.0f, 1.0f);
auto f32wrng = std::uniform_real_distribution<float>(0.25f, 0.75f);
std::vector<float> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> w(channels());
std::vector<float> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), [&] { return f32irng(rng);} );
std::generate(w.begin(), w.end(), [&] { return f32wrng(rng);} );
std::fill(y.begin(), y.end(), nanf(""));
// Compute reference results, without clamping.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
y_ref[i * channels() + c] = std::signbit(x[i * x_stride() + c]) ? x[i * x_stride() + c] * w[c] : x[i * x_stride() + c];
}
}
// Create, setup, run, and destroy PReLU operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t prelu_op = nullptr;
xnn_caches caches = {
.code_cache = NULL,
.weights_cache = NULL,
};
xnn_weights_cache weights_cache;
if (use_weights_cache()) {
xnn_init_weights_cache(&weights_cache);
caches.weights_cache = &weights_cache;
}
ASSERT_EQ(xnn_status_success,
xnn_create_prelu_nc_f32(
channels(), x_stride(), y_stride(),
w.data(),
0, &caches, &prelu_op));
ASSERT_NE(nullptr, prelu_op);
if (use_weights_cache()) {
ASSERT_EQ(xnn_status_success,
xnn_finalize_weights_cache(&weights_cache, xnn_weights_cache_finalization_kind_soft));
}
// Smart pointer to automatically delete prelu_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_prelu_nc_f32(
prelu_op,
batch_size(),
x.data(), y.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(prelu_op, nullptr /* thread pool */));
VerifyF32(y, y_ref);
if (use_weights_cache()) {
xnn_operator_t prelu_op2 = nullptr;
const size_t old_weights_cache_size = weights_cache.cache.weights.size;
ASSERT_EQ(xnn_status_success,
xnn_create_prelu_nc_f32(
channels(), x_stride(), y_stride(),
w.data(),
0, &caches, &prelu_op2));
ASSERT_NE(nullptr, prelu_op2);
// Smart pointer to automatically delete prelu_op2.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op2, xnn_delete_operator);
std::vector<float> y2(y.size(), nanf(""));
ASSERT_EQ(xnn_status_success,
xnn_setup_prelu_nc_f32(
prelu_op2,
batch_size(),
x.data(), y2.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(prelu_op2, nullptr /* thread pool */));
VerifyF32(y, y_ref);
VerifyWeightsCache(weights_cache, old_weights_cache_size);
xnn_release_weights_cache(&weights_cache);
}
}
}
void VerifyF32(const std::vector<float>& y, const std::vector<float>& y_ref) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(
y[i * y_stride() + c],
y_ref[i * channels() + c],
std::max(1.0e-6f, std::abs(y_ref[i * channels() + c]) * 1.0e-6f))
<< "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
}
}
}
void VerifyWeightsCache(const xnn_weights_cache& weights_cache, size_t old_size) const {
ASSERT_EQ(weights_cache.cache.hits, 1);
// Ensure that we did not write more weights to the cache because it was a cache hit.
ASSERT_EQ(old_size, weights_cache.cache.weights.size);
};
private:
size_t batch_size_{1};
size_t channels_{1};
size_t x_stride_{0};
size_t y_stride_{0};
WeightsType weights_type_{WeightsType::Default};
bool use_weights_cache_{false};
size_t iterations_{15};
};