blob: 33a5549e56163c5b6629fac3881c642de15ad4d7 [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <numeric>
#include <random>
#include <xnnpack.h>
#include <xnnpack/node-type.h>
#include <xnnpack/operator.h>
#include <xnnpack/subgraph.h>
#include <gtest/gtest.h>
class PreluTestF32 : public ::testing::Test {
protected:
void SetUp() override
{
random_device = std::unique_ptr<std::random_device>(new std::random_device());
rng = std::mt19937((*random_device)());
dim_dist = std::uniform_int_distribution<size_t>(1, 9);
input_dims = RandomShape(4);
output_dims = input_dims;
batch_size = input_dims[0] * input_dims[1] * input_dims[2];
channels = input_dims[3];
slope_dims = {channels};
input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + NumElements(input_dims));
slope = std::vector<float>(channels);
operator_output = std::vector<float>(NumElements(output_dims));
subgraph_output = std::vector<float>(operator_output.size());
}
std::vector<size_t> RandomShape(size_t num_dims)
{
std::vector<size_t> dims(num_dims);
std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
return dims;
}
size_t NumElements(std::vector<size_t>& dims)
{
return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
}
std::unique_ptr<std::random_device> random_device;
std::mt19937 rng;
std::uniform_int_distribution<size_t> dim_dist;
std::vector<size_t> output_dims;
std::vector<size_t> input_dims;
std::vector<size_t> slope_dims;
std::vector<float> input;
std::vector<float> slope;
std::vector<float> operator_output;
std::vector<float> subgraph_output;
size_t channels;
size_t batch_size;
};
TEST_F(PreluTestF32, define)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0,
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t slope_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), 1,
/*flags=*/0, &slope_id));
ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
uint32_t output_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 2,
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
ASSERT_EQ(subgraph->num_nodes, 1);
const struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->type, xnn_node_type_prelu);
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
ASSERT_EQ(node->num_inputs, 2);
ASSERT_EQ(node->inputs[0], input_id);
ASSERT_EQ(node->inputs[1], slope_id);
ASSERT_EQ(node->num_outputs, 1);
ASSERT_EQ(node->outputs[0], output_id);
ASSERT_EQ(node->flags, 0);
}
TEST_F(PreluTestF32, matches_operator_api)
{
std::uniform_real_distribution<float> f32idist(-1.0f, 1.0f);
std::uniform_real_distribution<float> f32wdist(0.25f, 0.75f);
std::generate(input.begin(), input.end(), [&]() { return f32idist(rng); });
std::generate(slope.begin(), slope.end(), [&]() { return f32wdist(rng); });
std::fill(operator_output.begin(), operator_output.end(), nanf(""));
std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
// Call operator API.
xnn_operator_t op = nullptr;
const xnn_status status =
xnn_create_prelu_nc_f32(channels, channels, channels, slope.data(), /*flags=*/0, nullptr, &op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, op);
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
ASSERT_EQ(
xnn_status_success,
xnn_setup_prelu_nc_f32(op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
// Call subgraph API.
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0,
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t slope_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success,
xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), /*external_id=*/1,
/*flags=*/0, &slope_id));
ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
uint32_t output_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success,
xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2,
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
std::array<xnn_external_value, 2> external = {
xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
ASSERT_EQ(subgraph_output, operator_output);
}