| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| |
| |
| class RAddStoreExpMinusMaxMicrokernelTester { |
| public: |
| inline RAddStoreExpMinusMaxMicrokernelTester& elements(size_t elements) { |
| assert(elements != 0); |
| this->elements_ = elements; |
| return *this; |
| } |
| |
| inline size_t elements() const { |
| return this->elements_; |
| } |
| |
| inline RAddStoreExpMinusMaxMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f16_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, xnn_init_f16_expminus_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| // Choose such range that exph(x[i]) overflows, but exph(x[i] - x_max) doesn't. |
| // However, the range is still narrow enough that double-precision exp doesn't overflow. |
| std::uniform_real_distribution<float> f32dist(15.0f, 20.0f); |
| |
| std::vector<uint16_t> x(elements() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> y(elements()); |
| std::vector<float> y_ref(elements()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results. |
| float sum_ref = 0.0f; |
| float x_max_as_float = -std::numeric_limits<float>::infinity(); |
| for (size_t i = 0; i < elements(); i++) { |
| x_max_as_float = std::max(x_max_as_float, fp16_ieee_to_fp32_value(x[i])); |
| } |
| const uint16_t x_max_as_half = fp16_ieee_from_fp32_value(x_max_as_float); |
| for (size_t i = 0; i < elements(); i++) { |
| const float y_ref_value = exp(fp16_ieee_to_fp32_value(x[i]) - x_max_as_float); |
| y_ref[i] = y_ref_value; |
| sum_ref += y_ref_value; |
| } |
| |
| // Call optimized micro-kernel. |
| uint16_t sum = UINT16_C(0x7E00) /* NaN */; |
| xnn_f16_expminus_params params; |
| init_params(¶ms); |
| raddstoreexpminusmax(elements() * sizeof(uint16_t), x.data(), &x_max_as_half, y.data(), &sum, ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < elements(); i++) { |
| ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::abs(y_ref[i]) * 5.0e-3f) |
| << "element " << i << " / " << elements() << ", x_max " << x_max_as_float; |
| } |
| ASSERT_NEAR(sum_ref, fp16_ieee_to_fp32_value(sum), std::abs(sum_ref) * 5.0e-3f) |
| << "batch " << elements() << ", x_max " << x_max_as_float; |
| } |
| } |
| |
| void Test(xnn_f32_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, xnn_init_f32_expminus_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| // Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't. |
| // However, the range is still narrow enough that double-precision exp doesn't overflow. |
| std::uniform_real_distribution<float> f32dist(90.0f, 100.0f); |
| |
| std::vector<float> x(elements() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> y(elements()); |
| std::vector<double> y_ref(elements()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), [&]() { return f32dist(rng); }); |
| std::fill(y.begin(), y.end(), std::nanf("")); |
| |
| // Compute reference results. |
| double sum_ref = 0.0f; |
| const float x_max = *std::max_element(x.begin(), x.begin() + elements()); |
| for (size_t i = 0; i < elements(); i++) { |
| const double y_ref_value = exp(double(x[i]) - double(x_max)); |
| y_ref[i] = y_ref_value; |
| sum_ref += y_ref_value; |
| } |
| |
| // Call optimized micro-kernel. |
| float sum = std::nanf(""); |
| xnn_f32_expminus_params params; |
| init_params(¶ms); |
| raddstoreexpminusmax(elements() * sizeof(float), x.data(), &x_max, y.data(), &sum, ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < elements(); i++) { |
| ASSERT_NEAR(y_ref[i], double(y[i]), std::abs(y_ref[i]) * 1.0e-6) |
| << "element " << i << " / " << elements() << ", x_max " << x_max; |
| } |
| ASSERT_NEAR(sum_ref, double(sum), std::abs(sum_ref) * 1.0e-6) |
| << "batch " << elements() << ", x_max " << x_max; |
| } |
| } |
| |
| private: |
| size_t elements_{1}; |
| size_t iterations_{15}; |
| }; |