| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack/requantization-stubs.h> |
| #include <xnnpack/requantization.h> |
| |
| |
| class RequantizationTester { |
| public: |
| inline RequantizationTester& s(uint32_t s) { |
| this->s_ = s; |
| return *this; |
| } |
| |
| inline uint32_t s() const { |
| return this->s_; |
| } |
| |
| inline float scale() const { |
| return ldexpf(1.0f, -s()); |
| } |
| |
| inline RequantizationTester& zero_point(int32_t zero_point) { |
| this->zero_point_ = zero_point; |
| return *this; |
| } |
| |
| inline int32_t zero_point() const { |
| return this->zero_point_; |
| } |
| |
| inline RequantizationTester& qmin(int16_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline int16_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline RequantizationTester& qmax(int16_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline int16_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline RequantizationTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s) with |
| * - scale = exp2(-s) |
| * - zero point in [0, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestExactDivideByPO2(xnn_qu8_requantization_function requantize) const { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point(); |
| const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point(); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int32_t clamped_i = std::max(min_i, std::min(max_i, i)); |
| inputs[i] = int32_t(uint32_t(clamped_i - zero_point()) << s()); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int32_t clamped_i = std::max(min_i, std::min(max_i, i)); |
| ASSERT_EQ(uint32_t(clamped_i), uint32_t(outputs[i])) |
| << "i = " << i << ", clamped i = " << clamped_i << ", input = " << inputs[i] |
| << ", min i = " << min_i << ", max i = " << max_i |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s) with |
| * - scale = exp2(-s) |
| * - zero point in [-128, 127] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestExactDivideByPO2(xnn_qs8_requantization_function requantize) const { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| const int32_t max_i = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point(); |
| const int32_t min_i = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point(); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int32_t clamped_i = std::max(min_i, std::min(max_i, i)); |
| inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(uint32_t(clamped_i - zero_point()) << s()); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int32_t clamped_i = std::max(min_i, std::min(max_i, i)); |
| ASSERT_EQ(clamped_i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()])) |
| << "i = " << i << ", clamped i = " << clamped_i |
| << ", input = " << inputs[i - std::numeric_limits<int8_t>::min()] |
| << ", min i = " << min_i << ", max i = " << max_i |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s - 2**(s-1) + 1) with |
| * - scale = exp2(-s) |
| * - zero point in [1, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestDivideByPO2WithRoundingUp(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) - |
| (INT64_C(1) << (s() - 1)) + 1; |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) - |
| (INT64_C(1) << (s() - 1)) + 1; |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s - 2**(s-1) + 1) with |
| * - scale = exp2(-s) |
| * - zero point in [-128, 127] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestDivideByPO2WithRoundingUp(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) - |
| (INT64_C(1) << (s() - 1)) + 1; |
| inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) - |
| (INT64_C(1) << (s() - 1)) + 1; |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s + 2**(s-1) - 1) with |
| * - scale = exp2(-s) |
| * - zero point in [1, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestDivideByPO2WithRoundingDown(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) + |
| (INT64_C(1) << (s() - 1)) - 1; |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) + |
| (INT64_C(1) << (s() - 1)) - 1; |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s + 2**(s-1) - 1) with |
| * - scale = exp2(-s) |
| * - zero point in [-128, 127] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void TestDivideByPO2WithRoundingDown(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) + |
| (INT64_C(1) << (s() - 1)) - 1; |
| inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) + |
| (INT64_C(1) << (s() - 1)) - 1; |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| void TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i <= std::numeric_limits<uint8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| void TestDivideByPO2WithRoundingTiesAway(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| void TestDivideByPO2WithRoundingTiesUp(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| input -= INT64_C(1) << (s() - 1); |
| inputs[i - std::numeric_limits<int8_t>::min()] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zero_point(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = std::numeric_limits<int8_t>::min(); i <= std::numeric_limits<int8_t>::max(); i++) { |
| int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()); |
| input -= INT64_C(1) << (s() - 1); |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, int32_t(outputs[i - std::numeric_limits<int8_t>::min()])) |
| << "i = " << i << ", input = " << input |
| << ", s = " << s() << ", zero point = " << zero_point(); |
| } |
| } |
| } |
| |
| void TestSpecialCases(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min()); |
| for (int32_t zero_point = 0; zero_point <= std::numeric_limits<uint8_t>::max(); zero_point++) { |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| ldexpf(1.0f, -32) /* scale */, |
| zero_point /* zero point */, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| ASSERT_EQ(std::max(int32_t(int32_t(std::numeric_limits<uint8_t>::min())), zero_point - 1), int32_t(outputs[i])); |
| } |
| } |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max()); |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| 0x1.FFFFFEp-1f /* scale */, |
| std::numeric_limits<uint8_t>::max() /* zero point */, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| ASSERT_EQ(std::numeric_limits<uint8_t>::max(), int32_t(outputs[i])); |
| } |
| } |
| |
| void TestSpecialCases(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<int8_t> outputs(inputs.size()); |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min()); |
| for (int32_t zero_point = std::numeric_limits<int8_t>::min(); |
| zero_point <= std::numeric_limits<int8_t>::max(); |
| zero_point++) |
| { |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| ldexpf(1.0f, -32) /* scale */, |
| zero_point, |
| std::numeric_limits<int8_t>::min(), |
| std::numeric_limits<int8_t>::max(), |
| outputs.data()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| ASSERT_EQ(std::max(int32_t(std::numeric_limits<int8_t>::min()), zero_point - 1), int32_t(outputs[i])); |
| } |
| } |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max()); |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| 0x1.FFFFFEp-1f /* scale */, |
| std::numeric_limits<int8_t>::max() /* zero point */, |
| std::numeric_limits<int8_t>::min(), |
| std::numeric_limits<int8_t>::max(), |
| outputs.data()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| ASSERT_EQ(std::numeric_limits<int8_t>::max(), int32_t(outputs[i])); |
| } |
| } |
| |
| void TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| std::mt19937 rng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto u8rng = |
| std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scale_distribution(rng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax())); |
| const int32_t input = int32_t(double(approximate_output) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t reference_output = xnn_qu8_requantize_rndna( |
| inputs[i], scale, zero_point(), qmin(), qmax()); |
| ASSERT_EQ(uint32_t(reference_output), uint32_t(outputs[i])); |
| } |
| } |
| } |
| |
| void TestRandomCasesRoundToNearestTiesAway(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| std::mt19937 rng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng)); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<int8_t> outputs(inputs.size()); |
| |
| std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scale_distribution(rng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax())); |
| const int32_t input = int32_t(double(approximate_output) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const int8_t reference_output = xnn_qs8_requantize_rndna( |
| inputs[i], scale, zero_point(), qmin(), qmax()); |
| ASSERT_EQ(int32_t(reference_output), int32_t(outputs[i])); |
| } |
| } |
| } |
| |
| void TestRandomCasesRoundToNearestTiesUp(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| std::mt19937 rng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng)); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<int8_t> outputs(inputs.size()); |
| |
| std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scale_distribution(rng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax())); |
| const int32_t input = int32_t(double(approximate_output) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case the test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const int8_t reference_output = xnn_qs8_requantize_rndnu( |
| inputs[i], scale, zero_point(), qmin(), qmax()); |
| ASSERT_EQ(int32_t(reference_output), int32_t(outputs[i])); |
| } |
| } |
| } |
| |
| void TestRandomCasesApproximate(xnn_qu8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| std::mt19937 rng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto u8rng = |
| std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scale_distribution(rng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t approximate_output = std::min(std::max(uint8_t(u8rng()), uint8_t(qmin())), uint8_t(qmax())); |
| const int32_t input = int32_t(double(approximate_output) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const double reference_output = RequantizationTester::RequantizeApproximate( |
| inputs[i], scale, uint8_t(zero_point()), uint8_t(qmin()), uint8_t(qmax())); |
| ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55) |
| << "input = " << inputs[i] << ", output = " << int32_t(outputs[i]) |
| << ", reference output = " << reference_output; |
| } |
| } |
| } |
| |
| void TestRandomCasesApproximate(xnn_qs8_requantization_function requantize) { |
| ASSERT_GE(zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmin(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(qmax(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max()); |
| ASSERT_LT(qmin(), qmax()); |
| |
| std::random_device random_device; |
| std::mt19937 rng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng)); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<int8_t> outputs(inputs.size()); |
| |
| std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scale_distribution(rng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const int8_t approximate_output = std::min(std::max(int8_t(i8rng()), int8_t(qmin())), int8_t(qmax())); |
| const int32_t input = int32_t(double(approximate_output) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zero_point(), qmin(), qmax(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const double reference_output = RequantizationTester::RequantizeApproximate( |
| inputs[i], scale, int8_t(zero_point()), int8_t(qmin()), int8_t(qmax())); |
| ASSERT_LE(std::abs(reference_output - double(outputs[i])), 0.55) |
| << "input = " << inputs[i] << ", output = " << int32_t(outputs[i]) |
| << ", reference output = " << reference_output; |
| } |
| } |
| } |
| |
| static inline int64_t ShiftLeft(int64_t w, uint32_t n) { |
| return (int64_t) ((uint64_t) w << n); |
| } |
| |
| static inline double RequantizeApproximate( |
| int32_t value, |
| float scale, |
| uint8_t zero_point, |
| uint8_t qmin, |
| uint8_t qmax) |
| { |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax)); |
| } |
| |
| static inline double RequantizeApproximate( |
| int32_t value, |
| float scale, |
| int8_t zero_point, |
| int8_t qmin, |
| int8_t qmax) |
| { |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| return std::min(std::max(double(value) * double(scale) + double(zero_point), double(qmin)), double(qmax)); |
| } |
| |
| private: |
| uint32_t s_{1}; |
| int32_t zero_point_{0}; |
| int16_t qmin_{std::numeric_limits<int16_t>::min()}; |
| int16_t qmax_{std::numeric_limits<int16_t>::max()}; |
| size_t iterations_{1}; |
| }; |