blob: fd525c114cae64c831e1bf9039497c1a9343020f [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <unordered_map>
#include <numeric>
#include <random>
#include <vector>
#include <type_traits>
#include <xnnpack.h>
#include <xnnpack/subgraph.h>
#include <gtest/gtest.h>
namespace xnnpack {
enum class TensorType {
kDense,
kSparse,
};
struct Padding {
uint32_t top;
uint32_t right;
uint32_t bottom;
uint32_t left;
};
struct HeightWidth {
uint32_t height;
uint32_t width;
};
using Kernel = HeightWidth;
using Subsampling = HeightWidth;
using Dilation = HeightWidth;
using Upsampling = HeightWidth;
using Adjustment = HeightWidth;
struct ConvolutionParams {
Padding padding;
Kernel kernel;
Subsampling subsampling;
Dilation dilation;
uint32_t groups;
uint32_t group_input_channels;
uint32_t group_output_channels;
};
struct DeconvolutionParams {
Padding padding;
Adjustment adjustment;
Kernel kernel;
Upsampling upsampling;
Dilation dilation;
uint32_t groups;
uint32_t group_input_channels;
uint32_t group_output_channels;
};
struct DepthwiseConvolutionParams {
Padding padding;
Kernel kernel;
Subsampling subsampling;
Dilation dilation;
uint32_t depth_multiplier;
uint32_t input_channels;
};
class SubgraphTester {
public:
explicit SubgraphTester(uint32_t external_value_ids) {
xnn_status status = xnn_initialize(nullptr);
EXPECT_EQ(status, xnn_status_success);
xnn_subgraph_t subgraph_ptr = nullptr;
status = xnn_create_subgraph(external_value_ids, 0 /* flags */, &subgraph_ptr);
EXPECT_EQ(status, xnn_status_success);
subgraph_.reset(subgraph_ptr);
std::random_device random_device;
rng_ = std::mt19937(random_device());
}
inline SubgraphTester& AddDynamicTensorF32(const std::vector<size_t>& dims,
uint32_t external_id,
uint32_t flags = 0) {
uint32_t id_out = 0;
const xnn_status status =
xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(),
dims.data(), nullptr, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddStaticTensorF32(const std::vector<size_t>& dims,
TensorType tensor_type,
uint32_t external_id,
uint32_t flags = 0) {
const size_t num_elements = NumElements(dims);
static_data_.emplace_back(num_elements * sizeof(float));
float* data = reinterpret_cast<float*>(static_data_.back().data());
if (tensor_type == TensorType::kDense) {
std::generate(data, data + num_elements, [&]() { return f32dist(rng_); });
} else {
// Create tensor with 90% sparsity in two steps:
// 1. Generate non-zero elements in the beginning of the vector
// 2. Randomize positions of non-zero elements
const size_t num_nonzero_elements = num_elements / 10;
std::generate(data, data + num_nonzero_elements, [&]() { return f32dist(rng_); });
std::shuffle(data, data + num_elements, rng_);
}
uint32_t id_out;
const xnn_status status =
xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(),
dims.data(), data, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddInputTensorF32(const std::vector<size_t>& dims, uint32_t external_id) {
AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_INPUT);
size_t num_elements = NumElements(dims);
auto input = std::vector<char>(num_elements * sizeof(float) + XNN_EXTRA_BYTES * sizeof(char));
float* data = reinterpret_cast<float*>(input.data());
std::generate(data, data + num_elements, [&]() { return f32dist(rng_); });
auto it = external_tensors_.insert({external_id, input});
EXPECT_TRUE(it.second);
return *this;
}
inline SubgraphTester& AddOutputTensorF32(const std::vector<size_t>& dims, uint32_t external_id) {
output_id_ = external_id;
AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_OUTPUT);
size_t num_elements = NumElements(dims);
auto output = std::vector<char>(num_elements * sizeof(float));
float* data = reinterpret_cast<float*>(output.data());
std::fill(data, data + num_elements, std::nanf(""));
auto it = external_tensors_.insert({external_id, output});
EXPECT_TRUE(it.second);
return *this;
}
inline SubgraphTester& AddConstantPad(
const size_t *pre_paddings, const size_t *post_paddings,
float padding_value, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_static_constant_pad(
subgraph_.get(), pre_paddings, post_paddings, padding_value, input_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddConvolution2D(
ConvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_convolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width,
params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width,
params.groups, params.group_input_channels, params.group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDepthwiseConvolution2D(
DepthwiseConvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) {
const xnn_status status = xnn_define_depthwise_convolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width,
params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width,
params.depth_multiplier, params.input_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddAddition(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_add2(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddAveragePooling2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height,
uint32_t stride_width, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_average_pooling_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, pooling_height, pooling_width,
stride_height, stride_width, -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id,
0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddClamp(float output_min, float output_max, uint32_t input_id, uint32_t output_id) {
const xnn_status status =
xnn_define_clamp(subgraph_.get(), output_min, output_max, input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDeconvolution2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t adjustment_height, uint32_t adjustment_width,
uint32_t kernel_height, uint32_t kernel_width,
uint32_t upsampling_height, uint32_t upsampling_width,
uint32_t dilation_height, uint32_t dilation_width, uint32_t groups,
size_t group_input_channels, size_t group_output_channels,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_deconvolution_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, adjustment_height,
adjustment_width, kernel_height, kernel_width, upsampling_height,
upsampling_width, dilation_height, dilation_width, groups,
group_input_channels, group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDeconvolution2D(
DeconvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_deconvolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.adjustment.height,
params.adjustment.width, params.kernel.height, params.kernel.width, params.upsampling.height,
params.upsampling.width, params.dilation.height, params.dilation.width, params.groups,
params.group_input_channels, params.group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDivide(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_divide(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddFullyConnected(
uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) {
const xnn_status status = xnn_define_fully_connected(
subgraph_.get(),
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddGlobalAveragePooling(uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_global_average_pooling_2d(
subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddMaxPooling2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height,
uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_max_pooling_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, pooling_height, pooling_width,
stride_height, stride_width, dilation_height, dilation_width, -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id,
0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddMultiply(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_multiply2(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddSubtract(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_subtract(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& Optimize() {
const xnn_status status = xnn_subgraph_optimize(subgraph_.get(), 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& RewriteForNchw() {
xnn_subgraph_rewrite_for_nchw(subgraph_.get());
return *this;
}
inline SubgraphTester& RewriteForFp16() {
EXPECT_TRUE(xnn_subgraph_rewrite_for_fp16(subgraph_.get()));
return *this;
}
inline xnn_layout_type GetLayout(uint32_t value_id) const {
return subgraph_->values[value_id].layout;
}
inline const xnn_value* const Value(uint32_t value_id) const {
return &subgraph_->values[value_id];
}
inline const xnn_node* const Node(uint32_t node_id) const {
return &subgraph_->nodes[node_id];
}
inline size_t NumNodes() const {
return subgraph_->num_nodes;
}
protected:
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> subgraph_{nullptr, xnn_delete_subgraph};
std::unordered_map<uint32_t, std::vector<char>> external_tensors_;
uint32_t output_id_;
private:
static inline size_t NumElements(const std::vector<size_t>& dims) {
return std::accumulate(std::begin(dims), std::end(dims), size_t(1), std::multiplies<size_t>());
}
std::vector<std::vector<char>> static_data_;
std::mt19937 rng_;
std::uniform_real_distribution<float> f32dist = std::uniform_real_distribution<float>(-1.0f, +1.0f);
};
} // namespace xnnpack