blob: 25f4015ecc8db895745f28022778c5a35b86caee [file] [log] [blame] [edit]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <array>
#include <cstdint>
#include <cstddef>
#include <limits>
#include <memory>
#include <numeric>
#include <random>
#include <xnnpack.h>
#include <xnnpack/node-type.h>
#include <xnnpack/operator.h>
#include <xnnpack/requantization.h>
#include <xnnpack/subgraph.h>
#include <gtest/gtest.h>
template <typename InputType, typename OutputType = InputType, size_t min_dim = 0> class UnaryTest : public ::testing::Test {
protected:
UnaryTest()
{
random_device = std::unique_ptr<std::random_device>(new std::random_device());
rng = std::mt19937((*random_device)());
shape_dist = std::uniform_int_distribution<size_t>(min_dim, XNN_MAX_TENSOR_DIMS);
dim_dist = std::uniform_int_distribution<size_t>(1, 9);
i8dist =
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
u8dist =
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
u32dist = std::uniform_int_distribution<uint32_t>();
scale_dist = std::uniform_real_distribution<float>(0.1f, 10.0f);
f32dist = std::uniform_real_distribution<float>(0.01f, 1.0f);
dims = RandomShape();
channels = dims.empty() ? 1 : dims.back();
xnn_shape shape = {
.num_dims = dims.size(),
};
memcpy(shape.dim, dims.data(), dims.size() * sizeof(size_t));
batch_size = xnn_shape_multiply_non_channel_dims(&shape);
num_output_elements = batch_size * channels;
scale = scale_dist(rng);
signed_zero_point = i8dist(rng);
unsigned_zero_point = u8dist(rng);
input = std::vector<InputType>(num_output_elements + XNN_EXTRA_BYTES / sizeof(InputType));
operator_output = std::vector<OutputType>(num_output_elements);
subgraph_output = std::vector<OutputType>(num_output_elements);
}
std::vector<size_t> RandomShape() {
std::vector<size_t> dims(shape_dist(rng));
std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
return dims;
}
size_t NumElements(std::vector<size_t>& dims)
{
return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
}
std::unique_ptr<std::random_device> random_device;
std::mt19937 rng;
std::uniform_int_distribution<size_t> shape_dist;
std::uniform_int_distribution<size_t> dim_dist;
std::uniform_real_distribution<float> scale_dist;
std::uniform_int_distribution<int32_t> i8dist;
std::uniform_int_distribution<int32_t> u8dist;
std::uniform_int_distribution<uint32_t> u32dist;
std::uniform_real_distribution<float> f32dist;
std::vector<size_t> dims;
uint32_t input_id;
uint32_t output_id;
size_t channels;
size_t batch_size;
size_t num_output_elements;
float scale;
int32_t signed_zero_point;
int32_t unsigned_zero_point;
std::vector<InputType> input;
std::vector<OutputType> operator_output;
std::vector<OutputType> subgraph_output;
};