| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| |
| class TanhOperatorTester { |
| public: |
| inline TanhOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline TanhOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->input_stride_ >= this->channels_); |
| return this->input_stride_; |
| } |
| } |
| |
| inline TanhOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->output_stride_ >= this->channels_); |
| return this->output_stride_; |
| } |
| } |
| |
| inline TanhOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline TanhOperatorTester& input_scale(float input_scale) { |
| assert(input_scale > 0.0f); |
| assert(std::isnormal(input_scale)); |
| this->input_scale_ = input_scale; |
| return *this; |
| } |
| |
| inline float input_scale() const { |
| return this->input_scale_; |
| } |
| |
| inline TanhOperatorTester& input_zero_point(uint8_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline float output_scale() const { |
| return 1.0f / 128.0f; |
| } |
| |
| inline uint8_t output_zero_point() const { |
| return 128; |
| } |
| |
| inline TanhOperatorTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline TanhOperatorTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline TanhOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestQS8() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| std::vector<int8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input_scale() * |
| (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point() - 0x80)); |
| const float tanh_x = std::tanh(x); |
| const float scaled_tanh_x = tanh_x / output_scale(); |
| float y = scaled_tanh_x; |
| y = std::min<float>(y, int32_t(qmax() - 0x80) - int32_t(output_zero_point() - 0x80)); |
| y = std::max<float>(y, int32_t(qmin() - 0x80) - int32_t(output_zero_point() - 0x80)); |
| output_ref[i * channels() + c] = y + int32_t(output_zero_point() - 0x80); |
| } |
| } |
| |
| // Create, setup, run, and destroy Sigmoid operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t tanh_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_tanh_nc_qs8( |
| channels(), input_stride(), output_stride(), |
| int8_t(input_zero_point() - 0x80), input_scale(), |
| int8_t(output_zero_point() - 0x80), output_scale(), |
| int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), |
| 0, &tanh_op)); |
| ASSERT_NE(nullptr, tanh_op); |
| |
| // Smart pointer to automatically delete tanh_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_tanh_nc_qs8( |
| tanh_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(tanh_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); |
| } |
| } |
| } |
| } |
| |
| void TestQU8() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<uint8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| const float x = input_scale() * |
| (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point())); |
| const float tanh_x = std::tanh(x); |
| const float scaled_tanh_x = tanh_x / output_scale(); |
| float y = scaled_tanh_x; |
| y = std::min<float>(y, int32_t(qmax()) - int32_t(output_zero_point())); |
| y = std::max<float>(y, int32_t(qmin()) - int32_t(output_zero_point())); |
| output_ref[i * channels() + c] = y + int32_t(output_zero_point()); |
| } |
| } |
| |
| // Create, setup, run, and destroy Sigmoid operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t tanh_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_tanh_nc_qu8( |
| channels(), input_stride(), output_stride(), |
| input_zero_point(), input_scale(), |
| output_zero_point(), output_scale(), |
| qmin(), qmax(), |
| 0, &tanh_op)); |
| ASSERT_NE(nullptr, tanh_op); |
| |
| // Smart pointer to automatically delete tanh_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_tanh_nc_qu8( |
| tanh_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(tanh_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| float input_scale_{0.75f}; |
| uint8_t input_zero_point_{121}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |