blob: 4a23391ec8b2692d9f21562ae7a483110530a359 [file] [log] [blame] [edit]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack.h>
class TanhOperatorTester {
public:
inline TanhOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline TanhOperatorTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return this->channels_;
} else {
assert(this->input_stride_ >= this->channels_);
return this->input_stride_;
}
}
inline TanhOperatorTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return this->channels_;
} else {
assert(this->output_stride_ >= this->channels_);
return this->output_stride_;
}
}
inline TanhOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline TanhOperatorTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
inline float input_scale() const {
return this->input_scale_;
}
inline TanhOperatorTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
inline uint8_t input_zero_point() const {
return this->input_zero_point_;
}
inline float output_scale() const {
return 1.0f / 128.0f;
}
inline uint8_t output_zero_point() const {
return 128;
}
inline TanhOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline TanhOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline TanhOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestQS8() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t));
std::vector<int8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(i8rng));
std::fill(output.begin(), output.end(), 0xA5);
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float x = input_scale() *
(int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point() - 0x80));
const float tanh_x = std::tanh(x);
const float scaled_tanh_x = tanh_x / output_scale();
float y = scaled_tanh_x;
y = std::min<float>(y, int32_t(qmax() - 0x80) - int32_t(output_zero_point() - 0x80));
y = std::max<float>(y, int32_t(qmin() - 0x80) - int32_t(output_zero_point() - 0x80));
output_ref[i * channels() + c] = y + int32_t(output_zero_point() - 0x80);
}
}
// Create, setup, run, and destroy Sigmoid operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t tanh_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_tanh_nc_qs8(
channels(), input_stride(), output_stride(),
int8_t(input_zero_point() - 0x80), input_scale(),
int8_t(output_zero_point() - 0x80), output_scale(),
int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
0, &tanh_op));
ASSERT_NE(nullptr, tanh_op);
// Smart pointer to automatically delete tanh_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_tanh_nc_qs8(
tanh_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(tanh_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f);
}
}
}
}
void TestQU8() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u8rng));
std::fill(output.begin(), output.end(), 0xA5);
// Compute reference results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
const float x = input_scale() *
(int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point()));
const float tanh_x = std::tanh(x);
const float scaled_tanh_x = tanh_x / output_scale();
float y = scaled_tanh_x;
y = std::min<float>(y, int32_t(qmax()) - int32_t(output_zero_point()));
y = std::max<float>(y, int32_t(qmin()) - int32_t(output_zero_point()));
output_ref[i * channels() + c] = y + int32_t(output_zero_point());
}
}
// Create, setup, run, and destroy Sigmoid operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t tanh_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_tanh_nc_qu8(
channels(), input_stride(), output_stride(),
input_zero_point(), input_scale(),
output_zero_point(), output_scale(),
qmin(), qmax(),
0, &tanh_op));
ASSERT_NE(nullptr, tanh_op);
// Smart pointer to automatically delete tanh_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_tanh_op(tanh_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_tanh_nc_qu8(
tanh_op,
batch_size(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(tanh_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f);
}
}
}
}
private:
size_t batch_size_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
float input_scale_{0.75f};
uint8_t input_zero_point_{121};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{15};
};