| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> // For std::generate, std::min. |
| #include <array> // For std::array. |
| #include <cmath> // For std::lrintf. |
| #include <cstddef> // For size_t. |
| #include <cstdint> // For uint32_t. |
| #include <limits> // For std::numeric_limits. |
| #include <memory> // For std::unique_ptr. |
| #include <random> // For std::random_device, std::mt19937, std::uniform_real_distribution. |
| #include <vector> // For std::vector. |
| |
| #include <xnnpack.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/requantization.h> |
| #include <xnnpack/subgraph.h> |
| |
| #include <gtest/gtest.h> |
| |
| template <class T, class BiasType = T> class Unpooling2DTestBase : public ::testing::Test { |
| protected: |
| Unpooling2DTestBase() |
| { |
| random_device = std::unique_ptr<std::random_device>(new std::random_device()); |
| rng = std::mt19937((*random_device)()); |
| input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15); |
| kernel_size_dist = std::uniform_int_distribution<uint32_t>(1, 5); |
| stride_dist = std::uniform_int_distribution<uint32_t>(1, 3); |
| f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f); |
| scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f); |
| i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000); |
| u32dist = std::uniform_int_distribution<uint32_t>(); |
| |
| batch_size = input_size_dist(rng); |
| input_height = input_size_dist(rng); |
| input_width = input_size_dist(rng); |
| pooling_height = 2; |
| pooling_width = 2; |
| channels = input_size_dist(rng); |
| output_height = xnn_compute_unpooling_output_dimension(input_height, padding_top + padding_bottom, pooling_height); |
| output_width = xnn_compute_unpooling_output_dimension(input_width, padding_left + padding_right, pooling_width); |
| |
| index_dist = std::uniform_int_distribution<uint32_t>(0, pooling_height * pooling_width - 1); |
| |
| input_value_dims = {{batch_size, input_height, input_width, channels}}; |
| input_index_dims = {{batch_size, input_height, input_width, channels}}; |
| output_dims = {{batch_size, output_height, output_width, channels}}; |
| |
| input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * channels); |
| input_index = std::vector<T>(batch_size * input_height * input_width * channels); |
| operator_output = std::vector<T>(batch_size * output_height * output_width * channels); |
| subgraph_output = std::vector<T>(batch_size * output_height * output_width * channels); |
| } |
| |
| std::unique_ptr<std::random_device> random_device; |
| std::mt19937 rng; |
| std::uniform_int_distribution<uint32_t> input_size_dist; |
| std::uniform_int_distribution<uint32_t> kernel_size_dist; |
| std::uniform_int_distribution<uint32_t> stride_dist; |
| std::uniform_int_distribution<int32_t> i32dist; |
| std::uniform_int_distribution<uint32_t> u32dist; |
| std::uniform_int_distribution<uint32_t> index_dist; |
| std::uniform_real_distribution<float> f32dist; |
| std::uniform_real_distribution<float> scale_dist; |
| |
| const uint32_t padding_top = 0; |
| const uint32_t padding_right = 0; |
| const uint32_t padding_bottom = 0; |
| const uint32_t padding_left = 0; |
| uint32_t batch_size; |
| uint32_t input_height; |
| uint32_t input_width; |
| uint32_t kernel_height; |
| uint32_t kernel_width; |
| uint32_t pooling_height; |
| uint32_t pooling_width; |
| uint32_t channels; |
| uint32_t output_height; |
| uint32_t output_width; |
| |
| std::array<size_t, 4> input_value_dims; |
| std::array<size_t, 4> input_index_dims; |
| std::array<size_t, 4> output_dims; |
| |
| std::vector<T> input; |
| std::vector<T> input_index; |
| std::vector<T> operator_output; |
| std::vector<T> subgraph_output; |
| }; |
| |
| using Unpooling2DTestX32 = Unpooling2DTestBase<uint32_t>; |
| |
| TEST_F(Unpooling2DTestX32, define) |
| { |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_value_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id)); |
| ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t input_index_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(), |
| input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_unpooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, |
| pooling_width, input_value_id, input_index_id, output_id, |
| /*flags=*/0)); |
| |
| ASSERT_EQ(subgraph->num_nodes, 1); |
| const struct xnn_node* node = &subgraph->nodes[0]; |
| ASSERT_EQ(node->type, xnn_node_type_unpooling_2d); |
| ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
| ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); |
| ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); |
| ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); |
| ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); |
| ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
| ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
| ASSERT_EQ(node->num_inputs, 2); |
| ASSERT_EQ(node->inputs[0], input_value_id); |
| ASSERT_EQ(node->inputs[1], input_index_id); |
| ASSERT_EQ(node->num_outputs, 1); |
| ASSERT_EQ(node->outputs[0], output_id); |
| ASSERT_EQ(node->flags, 0); |
| } |
| |
| TEST_F(Unpooling2DTestX32, matches_operator_api) |
| { |
| xnn_operator_t op = nullptr; |
| |
| std::generate(input.begin(), input.end(), [&]() { return u32dist(rng); }); |
| std::generate(input_index.begin(), input_index.end(), [&]() { return index_dist(rng); }); |
| std::generate(operator_output.begin(), operator_output.end(), [&]() { return u32dist(rng); }); |
| std::generate(subgraph_output.begin(), subgraph_output.end(), [&]() { return u32dist(rng); }); |
| |
| ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); |
| |
| // Call operator API. |
| const xnn_status status = xnn_create_unpooling2d_nhwc_x32( |
| padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, channels, channels, |
| channels, /*flags=*/0, &op); |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
| |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, op); |
| ASSERT_EQ( |
| xnn_status_success, |
| xnn_setup_unpooling2d_nhwc_x32( |
| op, batch_size, input_height, input_width, input.data(), input_index.data(), operator_output.data(), |
| /*threadpool=*/nullptr)); |
| |
| ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); |
| |
| // Call subgraph API. |
| xnn_subgraph_t subgraph = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); |
| std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
| |
| uint32_t input_value_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr, |
| /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id)); |
| ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID); |
| |
| uint32_t input_index_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(), |
| input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id)); |
| |
| uint32_t output_id = XNN_INVALID_NODE_ID; |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_tensor_value( |
| subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, |
| /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
| ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
| |
| ASSERT_EQ( |
| xnn_status_success, xnn_define_unpooling_2d( |
| subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, |
| pooling_width, input_value_id, input_index_id, output_id, |
| /*flags=*/0)); |
| |
| xnn_runtime_t runtime = nullptr; |
| ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); |
| ASSERT_NE(nullptr, runtime); |
| std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
| std::array<xnn_external_value, 2> external = { |
| xnn_external_value{input_value_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
| ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
| ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
| |
| ASSERT_EQ(subgraph_output, operator_output); |
| } |