| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/microfnptr.h> |
| |
| |
| extern XNN_INTERNAL const uint16_t xnn_table_vlog[129]; |
| |
| class VLogMicrokernelTester { |
| public: |
| inline VLogMicrokernelTester& batch(size_t batch) { |
| assert(batch != 0); |
| this->batch_ = batch; |
| return *this; |
| } |
| |
| inline size_t batch() const { |
| return this->batch_; |
| } |
| |
| inline VLogMicrokernelTester& input_lshift(uint32_t input_lshift) { |
| assert(input_lshift < 32); |
| this->input_lshift_ = input_lshift; |
| return *this; |
| } |
| |
| inline uint32_t input_lshift() const { |
| return this->input_lshift_; |
| } |
| |
| inline VLogMicrokernelTester& output_scale(uint32_t output_scale) { |
| this->output_scale_ = output_scale; |
| return *this; |
| } |
| |
| inline uint32_t output_scale() const { |
| return this->output_scale_; |
| } |
| |
| inline VLogMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline VLogMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_u32_vlog_ukernel_function vlog) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i16rng = std::bind(std::uniform_int_distribution<uint16_t>(), std::ref(rng)); |
| auto i32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng)); |
| |
| std::vector<uint32_t> x(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t)); |
| std::vector<uint16_t> y(batch() * (inplace() ? sizeof(uint32_t) / sizeof(uint16_t) : 1) + XNN_EXTRA_BYTES / sizeof(uint32_t)); |
| std::vector<uint16_t> y_ref(batch()); |
| const uint32_t* x_data = inplace() ? reinterpret_cast<const uint32_t*>(y.data()) : x.data(); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), std::ref(i32rng)); |
| std::generate(y.begin(), y.end(), std::ref(i16rng)); |
| std::generate(y_ref.begin(), y_ref.end(), std::ref(i16rng)); |
| |
| // Compute reference results. |
| for (size_t n = 0; n < batch(); n++) { |
| const uint32_t x_value = x_data[n]; |
| const uint32_t scaled = x_value << input_lshift(); |
| uint32_t log_value = 0; |
| if (scaled != 0) { |
| const uint32_t out_scale = output_scale(); |
| |
| const int log_scale = 65536; |
| const int log_scale_log2 = 16; |
| const int log_coeff = 45426; |
| const uint32_t log2x = math_clz_nonzero_u32(scaled) ^ 31; // log2 of scaled |
| assert(log2x < 32); |
| |
| // Number of segments in the log lookup table. The table will be log_segments+1 |
| // in length (with some padding). |
| const int log_segments_log2 = 7; |
| |
| // Part 1 |
| uint32_t frac = scaled - (UINT32_C(1) << log2x); |
| |
| // Shift the fractional part into msb of 16 bits |
| frac = XNN_UNPREDICTABLE(log2x < log_scale_log2) ? |
| (frac << (log_scale_log2 - log2x)) : |
| (frac >> (log2x - log_scale_log2)); |
| |
| // Part 2 |
| const uint32_t base_seg = frac >> (log_scale_log2 - log_segments_log2); |
| const uint32_t seg_unit = (UINT32_C(1) << log_scale_log2) >> log_segments_log2; |
| |
| assert(128 == (1 << log_segments_log2)); |
| assert(base_seg < (1 << log_segments_log2)); |
| |
| const uint32_t c0 = xnn_table_vlog[base_seg]; |
| const uint32_t c1 = xnn_table_vlog[base_seg + 1]; |
| const uint32_t seg_base = seg_unit * base_seg; |
| const uint32_t rel_pos = ((c1 - c0) * (frac - seg_base)) >> log_scale_log2; |
| const uint32_t fraction = frac + c0 + rel_pos; |
| |
| const uint32_t log2 = (log2x << log_scale_log2) + fraction; |
| const uint32_t round = log_scale / 2; |
| const uint32_t loge = (((uint64_t) log_coeff) * log2 + round) >> log_scale_log2; |
| |
| // Finally scale to our output scale |
| log_value = (out_scale * loge + round) >> log_scale_log2; |
| } |
| |
| const uint32_t vout = math_min_u32(log_value, (uint32_t) INT16_MAX); |
| y_ref[n] = vout; |
| } |
| |
| // Call optimized micro-kernel. |
| vlog(batch(), x_data, input_lshift(), output_scale(), y.data()); |
| |
| // Verify results. |
| for (size_t n = 0; n < batch(); n++) { |
| ASSERT_EQ(y[n], y_ref[n]) |
| << ", input_lshift " << input_lshift() |
| << ", output_scale " << output_scale() |
| << ", batch " << n << " / " << batch(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_{1}; |
| uint32_t input_lshift_{4}; |
| uint32_t output_scale_{16}; |
| bool inplace_{false}; |
| size_t iterations_{15}; |
| }; |