| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| |
| |
| class VLReLUMicrokernelTester { |
| public: |
| inline VLReLUMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline VLReLUMicrokernelTester& positive_scale(float positive_scale) { |
| assert(positive_scale > 0.0f); |
| assert(std::isnormal(positive_scale)); |
| this->positive_scale_ = positive_scale; |
| return *this; |
| } |
| |
| inline float positive_scale() const { |
| return this->positive_scale_; |
| } |
| |
| inline VLReLUMicrokernelTester& negative_scale(float negative_scale) { |
| assert(std::isnormal(negative_scale)); |
| this->negative_scale_ = negative_scale; |
| return *this; |
| } |
| |
| inline float negative_scale() const { |
| return this->negative_scale_; |
| } |
| |
| inline VLReLUMicrokernelTester& input_zero_point(int16_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline int16_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline VLReLUMicrokernelTester& output_zero_point(int16_t output_zero_point) { |
| this->output_zero_point_ = output_zero_point; |
| return *this; |
| } |
| |
| inline int16_t output_zero_point() const { |
| return this->output_zero_point_; |
| } |
| |
| inline VLReLUMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_qs8_vlrelu_ukernel_function vlrelu, xnn_init_qs8_lrelu_params_fn init_params) const { |
| ASSERT_GE(input_zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(input_zero_point(), std::numeric_limits<int8_t>::max()); |
| ASSERT_GE(output_zero_point(), std::numeric_limits<int8_t>::min()); |
| ASSERT_LE(output_zero_point(), std::numeric_limits<int8_t>::max()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> i8dist( |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); |
| |
| std::vector<int8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> output(batch_size()); |
| std::vector<int8_t> output_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| union xnn_qs8_lrelu_params params; |
| init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); |
| |
| // Call optimized micro-kernel. |
| vlrelu(batch_size() * sizeof(int8_t), input.data(), output.data(), ¶ms); |
| |
| // Compute reference results |
| const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); |
| const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); |
| for (size_t i = 0; i < batch_size(); i++) { |
| const int32_t input_value = (input_zero_point() - input[i]) << 7; |
| const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; |
| int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); |
| output_value = std::min<int32_t>(output_value, std::numeric_limits<int8_t>::max()); |
| output_value = std::max<int32_t>(output_value, std::numeric_limits<int8_t>::min()); |
| output_ref[i] = static_cast<int8_t>(output_value); |
| } |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) |
| << "at " << i << " / " << batch_size() |
| << ", x[" << i << "] = " << int32_t(input[i]); |
| } |
| } |
| } |
| |
| void Test(xnn_qu8_vlrelu_ukernel_function vlrelu, xnn_init_qu8_lrelu_params_fn init_params) const { |
| ASSERT_GE(input_zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(input_zero_point(), std::numeric_limits<uint8_t>::max()); |
| ASSERT_GE(output_zero_point(), std::numeric_limits<uint8_t>::min()); |
| ASSERT_LE(output_zero_point(), std::numeric_limits<uint8_t>::max()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| std::uniform_int_distribution<int32_t> u8dist( |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); |
| |
| std::vector<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output(batch_size()); |
| std::vector<uint8_t> output_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| union xnn_qu8_lrelu_params params; |
| init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); |
| |
| // Call optimized micro-kernel. |
| vlrelu(batch_size() * sizeof(uint8_t), input.data(), output.data(), ¶ms); |
| |
| // Compute reference results |
| const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); |
| const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); |
| for (size_t i = 0; i < batch_size(); i++) { |
| const int32_t input_value = (input_zero_point() - input[i]) << 7; |
| const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; |
| int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); |
| output_value = std::min<int32_t>(output_value, std::numeric_limits<uint8_t>::max()); |
| output_value = std::max<int32_t>(output_value, std::numeric_limits<uint8_t>::min()); |
| output_ref[i] = static_cast<uint8_t>(output_value); |
| } |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) |
| << "at " << i << " / " << batch_size() |
| << ", x[" << i << "] = " << int32_t(input[i]); |
| } |
| } |
| } |
| |
| private: |
| float positive_scale_ = 1.75f; |
| float negative_scale_ = 0.75f; |
| int16_t input_zero_point_ = 1; |
| int16_t output_zero_point_ = 5; |
| size_t batch_size_ = 1; |
| size_t iterations_ = 15; |
| }; |