| // |
| // Copyright © 2020 Arm Ltd. All rights reserved. |
| // SPDX-License-Identifier: MIT |
| // |
| |
| #pragma once |
| |
| #include "ArmnnDriver.hpp" |
| #include "ArmnnDriverImpl.hpp" |
| #include "RequestThread_1_3.hpp" |
| #include "ModelToINetworkConverter.hpp" |
| |
| #include <NeuralNetworks.h> |
| #include <armnn/ArmNN.hpp> |
| |
| #include <string> |
| #include <vector> |
| |
| namespace armnn_driver |
| { |
| using CallbackAsync_1_3 = std::function< |
| void(V1_3::ErrorStatus errorStatus, |
| std::vector<::android::hardware::neuralnetworks::V1_2::OutputShape> outputShapes, |
| const ::android::hardware::neuralnetworks::V1_2::Timing& timing, |
| std::string callingFunction)>; |
| |
| struct ExecutionContext_1_3 |
| { |
| ::android::hardware::neuralnetworks::V1_2::MeasureTiming measureTimings = |
| ::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO; |
| TimePoint driverStart; |
| TimePoint driverEnd; |
| TimePoint deviceStart; |
| TimePoint deviceEnd; |
| }; |
| |
| using CallbackContext_1_3 = CallbackContext<CallbackAsync_1_3, ExecutionContext_1_3>; |
| |
| using executeFenced_cb = std::function<void(::android::hardware::neuralnetworks::V1_3::ErrorStatus status, |
| const ::android::hardware::hidl_handle& syncFence, |
| const ::android::sp<::android::hardware::neuralnetworks::V1_3::IFencedExecutionCallback>& callback)>; |
| |
| template <typename HalVersion> |
| class ArmnnPreparedModel_1_3 : public V1_3::IPreparedModel |
| { |
| public: |
| using HalModel = typename V1_3::Model; |
| |
| ArmnnPreparedModel_1_3(armnn::NetworkId networkId, |
| armnn::IRuntime* runtime, |
| const HalModel& model, |
| const std::string& requestInputsAndOutputsDumpDir, |
| const bool gpuProfilingEnabled, |
| V1_3::Priority priority = V1_3::Priority::MEDIUM); |
| |
| virtual ~ArmnnPreparedModel_1_3(); |
| |
| Return<V1_0::ErrorStatus> execute(const V1_0::Request& request, |
| const sp<V1_0::IExecutionCallback>& callback) override; |
| |
| Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const sp<V1_2::IExecutionCallback>& callback) override; |
| |
| Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request& request, |
| V1_2::MeasureTiming measure, |
| const V1_3::OptionalTimePoint&, |
| const V1_3::OptionalTimeoutDuration&, |
| const sp<V1_3::IExecutionCallback>& callback) override; |
| |
| Return<void> executeSynchronously(const V1_0::Request &request, |
| V1_2::MeasureTiming measure, |
| V1_3::IPreparedModel::executeSynchronously_cb cb) override; |
| |
| Return<void> executeSynchronously_1_3(const V1_3::Request &request, |
| V1_2::MeasureTiming measure, |
| const V1_3::OptionalTimePoint& deadline, |
| const V1_3::OptionalTimeoutDuration& loopTimeoutDuration, |
| V1_3::IPreparedModel::executeSynchronously_1_3_cb cb) override; |
| |
| Return<void> executeFenced(const V1_3::Request& request, |
| const android::hardware::hidl_vec<android::hardware::hidl_handle>& fenceWaitFor, |
| V1_2::MeasureTiming measure, |
| const V1_3::OptionalTimePoint& deadline, |
| const V1_3::OptionalTimeoutDuration& loopTimeoutDuration, |
| const V1_3::OptionalTimeoutDuration& duration, |
| executeFenced_cb callback) override; |
| |
| Return<void> configureExecutionBurst( |
| const sp<V1_2::IBurstCallback>& callback, |
| const android::hardware::MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel, |
| const android::hardware::MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, |
| configureExecutionBurst_cb cb) override; |
| |
| template<typename CallbackContext> |
| Return<void> ExecuteSynchronously(const V1_3::Request& request, CallbackContext cbCtx); |
| |
| /// execute the graph prepared from the request |
| template<typename CallbackContext> |
| Return <V1_3::ErrorStatus> ExecuteGraph( |
| std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools, |
| armnn::InputTensors& inputTensors, |
| armnn::OutputTensors& outputTensors, |
| CallbackContext callback); |
| |
| /// Executes this model with dummy inputs (e.g. all zeroes). |
| /// \return false on failure, otherwise true |
| bool ExecuteWithDummyInputs(); |
| |
| V1_3::Priority GetModelPriority(); |
| |
| private: |
| Return <V1_3::ErrorStatus> Execute(const V1_3::Request& request, |
| V1_2::MeasureTiming measureTiming, |
| CallbackAsync_1_3 callback); |
| |
| Return<V1_3::ErrorStatus> PrepareMemoryForInputs( |
| armnn::InputTensors& inputs, |
| const V1_3::Request& request, |
| const std::vector<android::nn::RunTimePoolInfo>& memPools); |
| |
| Return<V1_3::ErrorStatus> PrepareMemoryForOutputs( |
| armnn::OutputTensors& outputs, |
| std::vector<V1_2::OutputShape> &outputShapes, |
| const V1_3::Request& request, |
| const std::vector<android::nn::RunTimePoolInfo>& memPools); |
| |
| std::tuple<V1_3::ErrorStatus, android::hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing, std::string> PrepareMemoryForIO( |
| armnn::InputTensors& inputs, |
| armnn::OutputTensors& outputs, |
| std::vector<android::nn::RunTimePoolInfo>& memPools, |
| const V1_3::Request& request); |
| |
| template <typename TensorBindingCollection> |
| void DumpTensorsIfRequired(char const* tensorNamePrefix, const TensorBindingCollection& tensorBindings); |
| |
| armnn::NetworkId m_NetworkId; |
| armnn::IRuntime* m_Runtime; |
| V1_3::Model m_Model; |
| // There must be a single RequestThread for all ArmnnPreparedModel objects to ensure serial execution of workloads |
| // It is specific to this class, so it is declared as static here |
| static RequestThread_1_3<ArmnnPreparedModel_1_3, HalVersion, CallbackContext_1_3> m_RequestThread; |
| uint32_t m_RequestCount; |
| const std::string& m_RequestInputsAndOutputsDumpDir; |
| const bool m_GpuProfilingEnabled; |
| V1_3::Priority m_ModelPriority; |
| }; |
| |
| } |