blob: 06723a9e1444f23d1e6a5a7c3a6b052cc5da9bf9 [file] [log] [blame]
//
// Copyright 2023 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramExecutableD3D.cpp: Implementation of ProgramExecutableD3D.
#include "libANGLE/renderer/d3d/ProgramExecutableD3D.h"
#include "common/bitset_utils.h"
#include "common/string_utils.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/ShaderExecutableD3D.h"
#include "libANGLE/trace.h"
namespace rx
{
namespace
{
void GetDefaultInputLayoutFromShader(const gl::SharedCompiledShaderState &vertexShader,
gl::InputLayout *inputLayoutOut)
{
inputLayoutOut->clear();
if (!vertexShader)
{
return;
}
for (const sh::ShaderVariable &shaderAttr : vertexShader->activeAttributes)
{
if (shaderAttr.type != GL_NONE)
{
GLenum transposedType = gl::TransposeMatrixType(shaderAttr.type);
for (size_t rowIndex = 0;
static_cast<int>(rowIndex) < gl::VariableRowCount(transposedType); ++rowIndex)
{
GLenum componentType = gl::VariableComponentType(transposedType);
GLuint components = static_cast<GLuint>(gl::VariableColumnCount(transposedType));
bool pureInt = (componentType != GL_FLOAT);
gl::VertexAttribType attribType =
gl::FromGLenum<gl::VertexAttribType>(componentType);
angle::FormatID defaultID =
gl::GetVertexFormatID(attribType, GL_FALSE, components, pureInt);
inputLayoutOut->push_back(defaultID);
}
}
}
}
size_t GetMaxOutputIndex(const std::vector<PixelShaderOutputVariable> &shaderOutputVars,
size_t location)
{
size_t maxIndex = 0;
for (auto &outputVar : shaderOutputVars)
{
if (outputVar.outputLocation == location)
{
maxIndex = std::max(maxIndex, outputVar.outputIndex);
}
}
return maxIndex;
}
void GetDefaultOutputLayoutFromShader(
const std::vector<PixelShaderOutputVariable> &shaderOutputVars,
std::vector<GLenum> *outputLayoutOut)
{
outputLayoutOut->clear();
if (!shaderOutputVars.empty())
{
size_t location = shaderOutputVars[0].outputLocation;
size_t maxIndex = GetMaxOutputIndex(shaderOutputVars, location);
outputLayoutOut->assign(maxIndex + 1,
GL_COLOR_ATTACHMENT0 + static_cast<unsigned int>(location));
}
}
void GetDefaultImage2DBindLayoutFromShader(const std::vector<sh::ShaderVariable> &image2DUniforms,
gl::ImageUnitTextureTypeMap *image2DBindLayout)
{
image2DBindLayout->clear();
for (const sh::ShaderVariable &image2D : image2DUniforms)
{
if (gl::IsImage2DType(image2D.type))
{
if (image2D.binding == -1)
{
image2DBindLayout->insert(std::make_pair(0, gl::TextureType::_2D));
}
else
{
for (unsigned int index = 0; index < image2D.getArraySizeProduct(); index++)
{
image2DBindLayout->insert(
std::make_pair(image2D.binding + index, gl::TextureType::_2D));
}
}
}
}
}
gl::PrimitiveMode GetGeometryShaderTypeFromDrawMode(gl::PrimitiveMode drawMode)
{
switch (drawMode)
{
// Uses the point sprite geometry shader.
case gl::PrimitiveMode::Points:
return gl::PrimitiveMode::Points;
// All line drawing uses the same geometry shader.
case gl::PrimitiveMode::Lines:
case gl::PrimitiveMode::LineStrip:
case gl::PrimitiveMode::LineLoop:
return gl::PrimitiveMode::Lines;
// The triangle fan primitive is emulated with strips in D3D11.
case gl::PrimitiveMode::Triangles:
case gl::PrimitiveMode::TriangleFan:
return gl::PrimitiveMode::Triangles;
// Special case for triangle strips.
case gl::PrimitiveMode::TriangleStrip:
return gl::PrimitiveMode::TriangleStrip;
default:
UNREACHABLE();
return gl::PrimitiveMode::InvalidEnum;
}
}
// Helper class that gathers uniform info from the default uniform block.
class UniformEncodingVisitorD3D : public sh::BlockEncoderVisitor
{
public:
UniformEncodingVisitorD3D(gl::ShaderType shaderType,
HLSLRegisterType registerType,
sh::BlockLayoutEncoder *encoder,
D3DUniformMap *uniformMapOut)
: sh::BlockEncoderVisitor("", "", encoder),
mShaderType(shaderType),
mRegisterType(registerType),
mUniformMapOut(uniformMapOut)
{}
void visitNamedOpaqueObject(const sh::ShaderVariable &sampler,
const std::string &name,
const std::string &mappedName,
const std::vector<unsigned int> &arraySizes) override
{
auto uniformMapEntry = mUniformMapOut->find(name);
if (uniformMapEntry == mUniformMapOut->end())
{
(*mUniformMapOut)[name] =
new D3DUniform(sampler.type, mRegisterType, name, sampler.arraySizes, true);
}
}
void encodeVariable(const sh::ShaderVariable &variable,
const sh::BlockMemberInfo &variableInfo,
const std::string &name,
const std::string &mappedName) override
{
auto uniformMapEntry = mUniformMapOut->find(name);
D3DUniform *d3dUniform = nullptr;
if (uniformMapEntry != mUniformMapOut->end())
{
d3dUniform = uniformMapEntry->second;
}
else
{
d3dUniform =
new D3DUniform(variable.type, mRegisterType, name, variable.arraySizes, true);
(*mUniformMapOut)[name] = d3dUniform;
}
d3dUniform->registerElement = static_cast<unsigned int>(
sh::BlockLayoutEncoder::GetBlockRegisterElement(variableInfo));
unsigned int reg =
static_cast<unsigned int>(sh::BlockLayoutEncoder::GetBlockRegister(variableInfo));
ASSERT(mShaderType != gl::ShaderType::InvalidEnum);
d3dUniform->mShaderRegisterIndexes[mShaderType] = reg;
}
private:
gl::ShaderType mShaderType;
HLSLRegisterType mRegisterType;
D3DUniformMap *mUniformMapOut;
};
} // anonymous namespace
// D3DUniform Implementation
D3DUniform::D3DUniform(GLenum type,
HLSLRegisterType reg,
const std::string &nameIn,
const std::vector<unsigned int> &arraySizesIn,
bool defaultBlock)
: typeInfo(gl::GetUniformTypeInfo(type)),
name(nameIn),
arraySizes(arraySizesIn),
mShaderData({}),
regType(reg),
registerCount(0),
registerElement(0)
{
mShaderRegisterIndexes.fill(GL_INVALID_INDEX);
// We use data storage for default block uniforms to cache values that are sent to D3D during
// rendering
// Uniform blocks/buffers are treated separately by the Renderer (ES3 path only)
if (defaultBlock)
{
// Use the row count as register count, will work for non-square matrices.
registerCount = typeInfo.rowCount * getArraySizeProduct();
}
}
D3DUniform::~D3DUniform() {}
unsigned int D3DUniform::getArraySizeProduct() const
{
return gl::ArraySizeProduct(arraySizes);
}
const uint8_t *D3DUniform::getDataPtrToElement(size_t elementIndex) const
{
ASSERT((!isArray() && elementIndex == 0) ||
(isArray() && elementIndex < getArraySizeProduct()));
if (isSampler())
{
return reinterpret_cast<const uint8_t *>(&mSamplerData[elementIndex]);
}
return firstNonNullData() + (elementIndex > 0 ? (typeInfo.internalSize * elementIndex) : 0u);
}
bool D3DUniform::isSampler() const
{
return typeInfo.isSampler;
}
bool D3DUniform::isImage() const
{
return typeInfo.isImageType;
}
bool D3DUniform::isImage2D() const
{
return gl::IsImage2DType(typeInfo.type);
}
bool D3DUniform::isReferencedByShader(gl::ShaderType shaderType) const
{
return mShaderRegisterIndexes[shaderType] != GL_INVALID_INDEX;
}
const uint8_t *D3DUniform::firstNonNullData() const
{
if (!mSamplerData.empty())
{
return reinterpret_cast<const uint8_t *>(mSamplerData.data());
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (mShaderData[shaderType])
{
return mShaderData[shaderType];
}
}
UNREACHABLE();
return nullptr;
}
// D3DInterfaceBlock Implementation
D3DInterfaceBlock::D3DInterfaceBlock()
{
mShaderRegisterIndexes.fill(GL_INVALID_INDEX);
}
D3DInterfaceBlock::D3DInterfaceBlock(const D3DInterfaceBlock &other) = default;
D3DUniformBlock::D3DUniformBlock()
{
mUseStructuredBuffers.fill(false);
mByteWidths.fill(0u);
mStructureByteStrides.fill(0u);
}
D3DUniformBlock::D3DUniformBlock(const D3DUniformBlock &other) = default;
// D3DVarying Implementation
D3DVarying::D3DVarying() : semanticIndex(0), componentCount(0), outputSlot(0) {}
D3DVarying::D3DVarying(const std::string &semanticNameIn,
unsigned int semanticIndexIn,
unsigned int componentCountIn,
unsigned int outputSlotIn)
: semanticName(semanticNameIn),
semanticIndex(semanticIndexIn),
componentCount(componentCountIn),
outputSlot(outputSlotIn)
{}
D3DVertexExecutable::D3DVertexExecutable(const gl::InputLayout &inputLayout,
const Signature &signature,
ShaderExecutableD3D *shaderExecutable)
: mInputs(inputLayout), mSignature(signature), mShaderExecutable(shaderExecutable)
{}
D3DVertexExecutable::~D3DVertexExecutable()
{
SafeDelete(mShaderExecutable);
}
// static
D3DVertexExecutable::HLSLAttribType D3DVertexExecutable::GetAttribType(GLenum type)
{
switch (type)
{
case GL_INT:
return HLSLAttribType::SIGNED_INT;
case GL_UNSIGNED_INT:
return HLSLAttribType::UNSIGNED_INT;
case GL_SIGNED_NORMALIZED:
case GL_UNSIGNED_NORMALIZED:
case GL_FLOAT:
return HLSLAttribType::FLOAT;
default:
UNREACHABLE();
return HLSLAttribType::FLOAT;
}
}
// static
void D3DVertexExecutable::getSignature(RendererD3D *renderer,
const gl::InputLayout &inputLayout,
Signature *signatureOut)
{
signatureOut->assign(inputLayout.size(), HLSLAttribType::FLOAT);
for (size_t index = 0; index < inputLayout.size(); ++index)
{
angle::FormatID vertexFormatID = inputLayout[index];
if (vertexFormatID == angle::FormatID::NONE)
continue;
VertexConversionType conversionType = renderer->getVertexConversionType(vertexFormatID);
if ((conversionType & VERTEX_CONVERT_GPU) == 0)
continue;
GLenum componentType = renderer->getVertexComponentType(vertexFormatID);
(*signatureOut)[index] = GetAttribType(componentType);
}
}
bool D3DVertexExecutable::matchesSignature(const Signature &signature) const
{
size_t limit = std::max(mSignature.size(), signature.size());
for (size_t index = 0; index < limit; ++index)
{
// treat undefined indexes as FLOAT
auto a = index < signature.size() ? signature[index] : HLSLAttribType::FLOAT;
auto b = index < mSignature.size() ? mSignature[index] : HLSLAttribType::FLOAT;
if (a != b)
return false;
}
return true;
}
D3DPixelExecutable::D3DPixelExecutable(const std::vector<GLenum> &outputSignature,
const gl::ImageUnitTextureTypeMap &image2DSignature,
ShaderExecutableD3D *shaderExecutable)
: mOutputSignature(outputSignature),
mImage2DSignature(image2DSignature),
mShaderExecutable(shaderExecutable)
{}
D3DPixelExecutable::~D3DPixelExecutable()
{
SafeDelete(mShaderExecutable);
}
D3DComputeExecutable::D3DComputeExecutable(const gl::ImageUnitTextureTypeMap &signature,
std::unique_ptr<ShaderExecutableD3D> shaderExecutable)
: mSignature(signature), mShaderExecutable(std::move(shaderExecutable))
{}
D3DComputeExecutable::~D3DComputeExecutable() {}
D3DSampler::D3DSampler() : active(false), logicalTextureUnit(0), textureType(gl::TextureType::_2D)
{}
D3DImage::D3DImage() : active(false), logicalImageUnit(0) {}
unsigned int ProgramExecutableD3D::mCurrentSerial = 1;
ProgramExecutableD3D::ProgramExecutableD3D(const gl::ProgramExecutable *executable)
: ProgramExecutableImpl(executable),
mUsesPointSize(false),
mUsesFlatInterpolation(false),
mUsedShaderSamplerRanges({}),
mDirtySamplerMapping(true),
mUsedImageRange({}),
mUsedReadonlyImageRange({}),
mUsedAtomicCounterRange({}),
mSerial(issueSerial())
{
reset();
}
ProgramExecutableD3D::~ProgramExecutableD3D() {}
void ProgramExecutableD3D::destroy(const gl::Context *context) {}
void ProgramExecutableD3D::reset()
{
mVertexExecutables.clear();
mPixelExecutables.clear();
mComputeExecutables.clear();
for (auto &geometryExecutable : mGeometryExecutables)
{
geometryExecutable.reset(nullptr);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderHLSL[shaderType].clear();
}
mFragDepthUsage = FragDepthUsage::Unused;
mUsesSampleMask = false;
mHasMultiviewEnabled = false;
mUsesVertexID = false;
mUsesViewID = false;
mPixelShaderKey.clear();
mUsesPointSize = false;
mUsesFlatInterpolation = false;
SafeDeleteContainer(mD3DUniforms);
mD3DUniformBlocks.clear();
mD3DShaderStorageBlocks.clear();
mComputeAtomicCounterBufferRegisterIndices.fill({});
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderUniformStorages[shaderType].reset();
mShaderSamplers[shaderType].clear();
mImages[shaderType].clear();
mReadonlyImages[shaderType].clear();
}
mUsedShaderSamplerRanges.fill({0, 0});
mUsedAtomicCounterRange.fill({0, 0});
mDirtySamplerMapping = true;
mUsedImageRange.fill({0, 0});
mUsedReadonlyImageRange.fill({0, 0});
mAttribLocationToD3DSemantic.fill(-1);
mStreamOutVaryings.clear();
mGeometryShaderPreamble.clear();
markUniformsClean();
mCachedPixelExecutableIndex.reset();
mCachedVertexExecutableIndex.reset();
}
bool ProgramExecutableD3D::load(const gl::Context *context,
RendererD3D *renderer,
gl::BinaryInputStream *stream)
{
gl::InfoLog &infoLog = mExecutable->getInfoLog();
reset();
DeviceIdentifier binaryDeviceIdentifier = {};
stream->readBytes(reinterpret_cast<unsigned char *>(&binaryDeviceIdentifier),
sizeof(DeviceIdentifier));
DeviceIdentifier identifier = renderer->getAdapterIdentifier();
if (memcmp(&identifier, &binaryDeviceIdentifier, sizeof(DeviceIdentifier)) != 0)
{
infoLog << "Invalid program binary, device configuration has changed.";
return false;
}
int compileFlags = stream->readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog << "Mismatched compilation flags.";
return false;
}
for (int &index : mAttribLocationToD3DSemantic)
{
stream->readInt(&index);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
size_t samplerCount = stream->readInt<size_t>();
for (size_t sampleIndex = 0; sampleIndex < samplerCount; ++sampleIndex)
{
D3DSampler sampler;
stream->readBool(&sampler.active);
stream->readInt(&sampler.logicalTextureUnit);
stream->readEnum(&sampler.textureType);
mShaderSamplers[shaderType].push_back(sampler);
}
unsigned int samplerRangeLow, samplerRangeHigh;
stream->readInt(&samplerRangeLow);
stream->readInt(&samplerRangeHigh);
mUsedShaderSamplerRanges[shaderType] = gl::RangeUI(samplerRangeLow, samplerRangeHigh);
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
size_t imageCount = stream->readInt<size_t>();
for (size_t imageIndex = 0; imageIndex < imageCount; ++imageIndex)
{
D3DImage image;
stream->readBool(&image.active);
stream->readInt(&image.logicalImageUnit);
mImages[shaderType].push_back(image);
}
size_t readonlyImageCount = stream->readInt<size_t>();
for (size_t imageIndex = 0; imageIndex < readonlyImageCount; ++imageIndex)
{
D3DImage image;
stream->readBool(&image.active);
stream->readInt(&image.logicalImageUnit);
mReadonlyImages[shaderType].push_back(image);
}
unsigned int imageRangeLow, imageRangeHigh, readonlyImageRangeLow, readonlyImageRangeHigh;
stream->readInt(&imageRangeLow);
stream->readInt(&imageRangeHigh);
stream->readInt(&readonlyImageRangeLow);
stream->readInt(&readonlyImageRangeHigh);
mUsedImageRange[shaderType] = gl::RangeUI(imageRangeLow, imageRangeHigh);
mUsedReadonlyImageRange[shaderType] =
gl::RangeUI(readonlyImageRangeLow, readonlyImageRangeHigh);
unsigned int atomicCounterRangeLow, atomicCounterRangeHigh;
stream->readInt(&atomicCounterRangeLow);
stream->readInt(&atomicCounterRangeHigh);
mUsedAtomicCounterRange[shaderType] =
gl::RangeUI(atomicCounterRangeLow, atomicCounterRangeHigh);
}
size_t shaderStorageBlockCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mD3DShaderStorageBlocks.empty());
for (size_t blockIndex = 0; blockIndex < shaderStorageBlockCount; ++blockIndex)
{
D3DInterfaceBlock shaderStorageBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&shaderStorageBlock.mShaderRegisterIndexes[shaderType]);
}
mD3DShaderStorageBlocks.push_back(shaderStorageBlock);
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
size_t image2DUniformCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mImage2DUniforms[shaderType].empty());
for (size_t image2DUniformIndex = 0; image2DUniformIndex < image2DUniformCount;
++image2DUniformIndex)
{
sh::ShaderVariable image2Duniform;
gl::LoadShaderVar(stream, &image2Duniform);
mImage2DUniforms[shaderType].push_back(image2Duniform);
}
}
for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS; ++ii)
{
unsigned int index = stream->readInt<unsigned int>();
mComputeAtomicCounterBufferRegisterIndices[ii] = index;
}
size_t uniformCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
const auto &linkedUniforms = mExecutable->getUniforms();
ASSERT(mD3DUniforms.empty());
for (size_t uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
const gl::LinkedUniform &linkedUniform = linkedUniforms[uniformIndex];
// Could D3DUniform just change to use unsigned int instead of std::vector for arraySizes?
// Frontend always flatten the array to at most 1D array.
std::vector<unsigned int> arraySizes;
if (linkedUniform.isArray())
{
arraySizes.push_back(linkedUniform.getBasicTypeElementCount());
}
D3DUniform *d3dUniform = new D3DUniform(linkedUniform.getType(), HLSLRegisterType::None,
mExecutable->getUniformNames()[uniformIndex],
arraySizes, linkedUniform.isInDefaultBlock());
stream->readEnum(&d3dUniform->regType);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&d3dUniform->mShaderRegisterIndexes[shaderType]);
}
stream->readInt(&d3dUniform->registerCount);
stream->readInt(&d3dUniform->registerElement);
mD3DUniforms.push_back(d3dUniform);
}
size_t blockCount = stream->readInt<size_t>();
if (stream->error())
{
infoLog << "Invalid program binary.";
return false;
}
ASSERT(mD3DUniformBlocks.empty());
for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
{
D3DUniformBlock uniformBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readInt(&uniformBlock.mShaderRegisterIndexes[shaderType]);
stream->readBool(&uniformBlock.mUseStructuredBuffers[shaderType]);
stream->readInt(&uniformBlock.mByteWidths[shaderType]);
stream->readInt(&uniformBlock.mStructureByteStrides[shaderType]);
}
mD3DUniformBlocks.push_back(uniformBlock);
}
size_t streamOutVaryingCount = stream->readInt<size_t>();
mStreamOutVaryings.resize(streamOutVaryingCount);
for (size_t varyingIndex = 0; varyingIndex < streamOutVaryingCount; ++varyingIndex)
{
D3DVarying *varying = &mStreamOutVaryings[varyingIndex];
stream->readString(&varying->semanticName);
stream->readInt(&varying->semanticIndex);
stream->readInt(&varying->componentCount);
stream->readInt(&varying->outputSlot);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->readString(&mShaderHLSL[shaderType]);
stream->readBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]),
sizeof(CompilerWorkaroundsD3D));
}
stream->readEnum(&mFragDepthUsage);
stream->readBool(&mUsesSampleMask);
stream->readBool(&mHasMultiviewEnabled);
stream->readBool(&mUsesVertexID);
stream->readBool(&mUsesViewID);
stream->readBool(&mUsesPointSize);
stream->readBool(&mUsesFlatInterpolation);
const size_t pixelShaderKeySize = stream->readInt<size_t>();
mPixelShaderKey.resize(pixelShaderKeySize);
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize;
pixelShaderKeyIndex++)
{
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].type);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].name);
stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].source);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputLocation);
stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex);
}
stream->readString(&mGeometryShaderPreamble);
return true;
}
angle::Result ProgramExecutableD3D::loadBinaryShaderExecutables(d3d::Context *contextD3D,
RendererD3D *renderer,
gl::BinaryInputStream *stream)
{
gl::InfoLog &infoLog = mExecutable->getInfoLog();
const unsigned char *binary = reinterpret_cast<const unsigned char *>(stream->data());
bool separateAttribs = mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS;
size_t vertexShaderCount = stream->readInt<size_t>();
for (size_t vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; vertexShaderIndex++)
{
size_t inputLayoutSize = stream->readInt<size_t>();
gl::InputLayout inputLayout(inputLayoutSize, angle::FormatID::NONE);
for (size_t inputIndex = 0; inputIndex < inputLayoutSize; inputIndex++)
{
inputLayout[inputIndex] = stream->readEnum<angle::FormatID>();
}
size_t vertexShaderSize = stream->readInt<size_t>();
const unsigned char *vertexShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, vertexShaderFunction, vertexShaderSize,
gl::ShaderType::Vertex, mStreamOutVaryings,
separateAttribs, &shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create vertex shader.";
return angle::Result::Stop;
}
// generated converted input layout
D3DVertexExecutable::Signature signature;
D3DVertexExecutable::getSignature(renderer, inputLayout, &signature);
// add new binary
mVertexExecutables.push_back(std::unique_ptr<D3DVertexExecutable>(
new D3DVertexExecutable(inputLayout, signature, shaderExecutable)));
stream->skip(vertexShaderSize);
}
size_t pixelShaderCount = stream->readInt<size_t>();
for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++)
{
size_t outputCount = stream->readInt<size_t>();
std::vector<GLenum> outputs(outputCount);
for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++)
{
stream->readInt(&outputs[outputIndex]);
}
const size_t image2DCount = stream->readInt<size_t>();
gl::ImageUnitTextureTypeMap image2Ds;
for (size_t index = 0; index < image2DCount; index++)
{
unsigned int imageUint;
gl::TextureType textureType;
stream->readInt(&imageUint);
stream->readEnum(&textureType);
image2Ds.insert({imageUint, textureType});
}
size_t pixelShaderSize = stream->readInt<size_t>();
const unsigned char *pixelShaderFunction = binary + stream->offset();
ShaderExecutableD3D *shaderExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, pixelShaderFunction, pixelShaderSize,
gl::ShaderType::Fragment, mStreamOutVaryings,
separateAttribs, &shaderExecutable));
if (!shaderExecutable)
{
infoLog << "Could not create pixel shader.";
return angle::Result::Stop;
}
// add new binary
mPixelExecutables.push_back(std::unique_ptr<D3DPixelExecutable>(
new D3DPixelExecutable(outputs, image2Ds, shaderExecutable)));
stream->skip(pixelShaderSize);
}
for (std::unique_ptr<ShaderExecutableD3D> &geometryExe : mGeometryExecutables)
{
size_t geometryShaderSize = stream->readInt<size_t>();
if (geometryShaderSize == 0)
{
continue;
}
const unsigned char *geometryShaderFunction = binary + stream->offset();
ShaderExecutableD3D *geometryExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, geometryShaderFunction, geometryShaderSize,
gl::ShaderType::Geometry, mStreamOutVaryings,
separateAttribs, &geometryExecutable));
if (!geometryExecutable)
{
infoLog << "Could not create geometry shader.";
return angle::Result::Stop;
}
geometryExe.reset(geometryExecutable);
stream->skip(geometryShaderSize);
}
size_t computeShaderCount = stream->readInt<size_t>();
for (size_t computeShaderIndex = 0; computeShaderIndex < computeShaderCount;
computeShaderIndex++)
{
size_t signatureCount = stream->readInt<size_t>();
gl::ImageUnitTextureTypeMap signatures;
for (size_t signatureIndex = 0; signatureIndex < signatureCount; signatureIndex++)
{
unsigned int imageUint;
gl::TextureType textureType;
stream->readInt(&imageUint);
stream->readEnum(&textureType);
signatures.insert(std::pair<unsigned int, gl::TextureType>(imageUint, textureType));
}
size_t computeShaderSize = stream->readInt<size_t>();
const unsigned char *computeShaderFunction = binary + stream->offset();
ShaderExecutableD3D *computeExecutable = nullptr;
ANGLE_TRY(renderer->loadExecutable(contextD3D, computeShaderFunction, computeShaderSize,
gl::ShaderType::Compute, std::vector<D3DVarying>(),
false, &computeExecutable));
if (!computeExecutable)
{
infoLog << "Could not create compute shader.";
return angle::Result::Stop;
}
// add new binary
mComputeExecutables.push_back(
std::unique_ptr<D3DComputeExecutable>(new D3DComputeExecutable(
signatures, std::unique_ptr<ShaderExecutableD3D>(computeExecutable))));
stream->skip(computeShaderSize);
}
for (const gl::ShaderType shaderType :
{gl::ShaderType::Vertex, gl::ShaderType::Fragment, gl::ShaderType::Compute})
{
size_t bindLayoutCount = stream->readInt<size_t>();
for (size_t bindLayoutIndex = 0; bindLayoutIndex < bindLayoutCount; bindLayoutIndex++)
{
mImage2DBindLayoutCache[shaderType].insert(std::pair<unsigned int, gl::TextureType>(
stream->readInt<unsigned int>(), gl::TextureType::_2D));
}
}
initializeUniformStorage(renderer, mExecutable->getLinkedShaderStages());
dirtyAllUniforms();
return angle::Result::Continue;
}
void ProgramExecutableD3D::save(const gl::Context *context,
RendererD3D *renderer,
gl::BinaryOutputStream *stream)
{
// Output the DeviceIdentifier before we output any shader code
// When we load the binary again later, we can validate the device identifier before trying to
// compile any HLSL
DeviceIdentifier binaryIdentifier = renderer->getAdapterIdentifier();
stream->writeBytes(reinterpret_cast<unsigned char *>(&binaryIdentifier),
sizeof(DeviceIdentifier));
stream->writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (int d3dSemantic : mAttribLocationToD3DSemantic)
{
stream->writeInt(d3dSemantic);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeInt(mShaderSamplers[shaderType].size());
for (unsigned int i = 0; i < mShaderSamplers[shaderType].size(); ++i)
{
stream->writeBool(mShaderSamplers[shaderType][i].active);
stream->writeInt(mShaderSamplers[shaderType][i].logicalTextureUnit);
stream->writeEnum(mShaderSamplers[shaderType][i].textureType);
}
stream->writeInt(mUsedShaderSamplerRanges[shaderType].low());
stream->writeInt(mUsedShaderSamplerRanges[shaderType].high());
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
stream->writeInt(mImages[shaderType].size());
for (size_t imageIndex = 0; imageIndex < mImages[shaderType].size(); ++imageIndex)
{
stream->writeBool(mImages[shaderType][imageIndex].active);
stream->writeInt(mImages[shaderType][imageIndex].logicalImageUnit);
}
stream->writeInt(mReadonlyImages[shaderType].size());
for (size_t imageIndex = 0; imageIndex < mReadonlyImages[shaderType].size(); ++imageIndex)
{
stream->writeBool(mReadonlyImages[shaderType][imageIndex].active);
stream->writeInt(mReadonlyImages[shaderType][imageIndex].logicalImageUnit);
}
stream->writeInt(mUsedImageRange[shaderType].low());
stream->writeInt(mUsedImageRange[shaderType].high());
stream->writeInt(mUsedReadonlyImageRange[shaderType].low());
stream->writeInt(mUsedReadonlyImageRange[shaderType].high());
stream->writeInt(mUsedAtomicCounterRange[shaderType].low());
stream->writeInt(mUsedAtomicCounterRange[shaderType].high());
}
stream->writeInt(mD3DShaderStorageBlocks.size());
for (const D3DInterfaceBlock &shaderStorageBlock : mD3DShaderStorageBlocks)
{
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(shaderStorageBlock.mShaderRegisterIndexes[shaderType]);
}
}
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
stream->writeInt(mImage2DUniforms[shaderType].size());
for (const sh::ShaderVariable &image2DUniform : mImage2DUniforms[shaderType])
{
gl::WriteShaderVar(stream, image2DUniform);
}
}
for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS; ++ii)
{
stream->writeInt(mComputeAtomicCounterBufferRegisterIndices[ii]);
}
stream->writeInt(mD3DUniforms.size());
for (const D3DUniform *uniform : mD3DUniforms)
{
// Type, name and arraySize are redundant, so aren't stored in the binary.
stream->writeEnum(uniform->regType);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(uniform->mShaderRegisterIndexes[shaderType]);
}
stream->writeInt(uniform->registerCount);
stream->writeInt(uniform->registerElement);
}
stream->writeInt(mD3DUniformBlocks.size());
for (const D3DUniformBlock &uniformBlock : mD3DUniformBlocks)
{
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeIntOrNegOne(uniformBlock.mShaderRegisterIndexes[shaderType]);
stream->writeBool(uniformBlock.mUseStructuredBuffers[shaderType]);
stream->writeInt(uniformBlock.mByteWidths[shaderType]);
stream->writeInt(uniformBlock.mStructureByteStrides[shaderType]);
}
}
stream->writeInt(mStreamOutVaryings.size());
for (const D3DVarying &varying : mStreamOutVaryings)
{
stream->writeString(varying.semanticName);
stream->writeInt(varying.semanticIndex);
stream->writeInt(varying.componentCount);
stream->writeInt(varying.outputSlot);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
stream->writeString(mShaderHLSL[shaderType]);
stream->writeBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]),
sizeof(CompilerWorkaroundsD3D));
}
stream->writeEnum(mFragDepthUsage);
stream->writeBool(mUsesSampleMask);
stream->writeBool(mHasMultiviewEnabled);
stream->writeBool(mUsesVertexID);
stream->writeBool(mUsesViewID);
stream->writeBool(mUsesPointSize);
stream->writeBool(mUsesFlatInterpolation);
const std::vector<PixelShaderOutputVariable> &pixelShaderKey = mPixelShaderKey;
stream->writeInt(pixelShaderKey.size());
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKey.size();
pixelShaderKeyIndex++)
{
const PixelShaderOutputVariable &variable = pixelShaderKey[pixelShaderKeyIndex];
stream->writeInt(variable.type);
stream->writeString(variable.name);
stream->writeString(variable.source);
stream->writeInt(variable.outputLocation);
stream->writeInt(variable.outputIndex);
}
stream->writeString(mGeometryShaderPreamble);
stream->writeInt(mVertexExecutables.size());
for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size();
vertexExecutableIndex++)
{
D3DVertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex].get();
const gl::InputLayout &inputLayout = vertexExecutable->inputs();
stream->writeInt(inputLayout.size());
for (size_t inputIndex = 0; inputIndex < inputLayout.size(); inputIndex++)
{
stream->writeEnum(inputLayout[inputIndex]);
}
size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength();
stream->writeInt(vertexShaderSize);
const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction();
stream->writeBytes(vertexBlob, vertexShaderSize);
}
stream->writeInt(mPixelExecutables.size());
for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size();
pixelExecutableIndex++)
{
D3DPixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex].get();
const std::vector<GLenum> &outputs = pixelExecutable->outputSignature();
stream->writeInt(outputs.size());
for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++)
{
stream->writeInt(outputs[outputIndex]);
}
const gl::ImageUnitTextureTypeMap &image2Ds = pixelExecutable->image2DSignature();
stream->writeInt(image2Ds.size());
for (const auto &image2D : image2Ds)
{
stream->writeInt(image2D.first);
stream->writeEnum(image2D.second);
}
size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength();
stream->writeInt(pixelShaderSize);
const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction();
stream->writeBytes(pixelBlob, pixelShaderSize);
}
for (auto const &geometryExecutable : mGeometryExecutables)
{
if (!geometryExecutable)
{
stream->writeInt<size_t>(0);
continue;
}
size_t geometryShaderSize = geometryExecutable->getLength();
stream->writeInt(geometryShaderSize);
stream->writeBytes(geometryExecutable->getFunction(), geometryShaderSize);
}
stream->writeInt(mComputeExecutables.size());
for (size_t computeExecutableIndex = 0; computeExecutableIndex < mComputeExecutables.size();
computeExecutableIndex++)
{
D3DComputeExecutable *computeExecutable = mComputeExecutables[computeExecutableIndex].get();
const gl::ImageUnitTextureTypeMap signatures = computeExecutable->signature();
stream->writeInt(signatures.size());
for (const auto &signature : signatures)
{
stream->writeInt(signature.first);
stream->writeEnum(signature.second);
}
size_t computeShaderSize = computeExecutable->shaderExecutable()->getLength();
stream->writeInt(computeShaderSize);
const uint8_t *computeBlob = computeExecutable->shaderExecutable()->getFunction();
stream->writeBytes(computeBlob, computeShaderSize);
}
for (const gl::ShaderType shaderType :
{gl::ShaderType::Vertex, gl::ShaderType::Fragment, gl::ShaderType::Compute})
{
stream->writeInt(mImage2DBindLayoutCache[shaderType].size());
for (auto &image2DBindLayout : mImage2DBindLayoutCache[shaderType])
{
stream->writeInt(image2DBindLayout.first);
}
}
}
bool ProgramExecutableD3D::hasVertexExecutableForCachedInputLayout()
{
return mCachedVertexExecutableIndex.valid();
}
bool ProgramExecutableD3D::hasGeometryExecutableForPrimitiveType(RendererD3D *renderer,
const gl::State &state,
gl::PrimitiveMode drawMode)
{
if (!usesGeometryShader(renderer, state.getProvokingVertex(), drawMode))
{
// No shader necessary mean we have the required (null) executable.
return true;
}
gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode);
return mGeometryExecutables[geometryShaderType].get() != nullptr;
}
bool ProgramExecutableD3D::hasPixelExecutableForCachedOutputLayout()
{
return mCachedPixelExecutableIndex.valid();
}
bool ProgramExecutableD3D::hasComputeExecutableForCachedImage2DBindLayout()
{
return mCachedComputeExecutableIndex.valid();
}
void ProgramExecutableD3D::dirtyAllUniforms()
{
mShaderUniformsDirty = mExecutable->getLinkedShaderStages();
}
void ProgramExecutableD3D::markUniformsClean()
{
mShaderUniformsDirty.reset();
}
unsigned int ProgramExecutableD3D::getAtomicCounterBufferRegisterIndex(
GLuint binding,
gl::ShaderType shaderType) const
{
if (shaderType != gl::ShaderType::Compute)
{
// Implement atomic counters for non-compute shaders
// http://anglebug.com/42260658
UNIMPLEMENTED();
}
return mComputeAtomicCounterBufferRegisterIndices[binding];
}
unsigned int ProgramExecutableD3D::getShaderStorageBufferRegisterIndex(
GLuint blockIndex,
gl::ShaderType shaderType) const
{
return mD3DShaderStorageBlocks[blockIndex].mShaderRegisterIndexes[shaderType];
}
const std::vector<D3DUBOCache> &ProgramExecutableD3D::getShaderUniformBufferCache(
gl::ShaderType shaderType) const
{
return mShaderUBOCaches[shaderType];
}
const std::vector<D3DUBOCacheUseSB> &ProgramExecutableD3D::getShaderUniformBufferCacheUseSB(
gl::ShaderType shaderType) const
{
return mShaderUBOCachesUseSB[shaderType];
}
GLint ProgramExecutableD3D::getSamplerMapping(gl::ShaderType type,
unsigned int samplerIndex,
const gl::Caps &caps) const
{
GLint logicalTextureUnit = -1;
ASSERT(type != gl::ShaderType::InvalidEnum);
ASSERT(samplerIndex < static_cast<unsigned int>(caps.maxShaderTextureImageUnits[type]));
const auto &samplers = mShaderSamplers[type];
if (samplerIndex < samplers.size() && samplers[samplerIndex].active)
{
logicalTextureUnit = samplers[samplerIndex].logicalTextureUnit;
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < caps.maxCombinedTextureImageUnits)
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
gl::TextureType ProgramExecutableD3D::getSamplerTextureType(gl::ShaderType type,
unsigned int samplerIndex) const
{
ASSERT(type != gl::ShaderType::InvalidEnum);
const auto &samplers = mShaderSamplers[type];
ASSERT(samplerIndex < samplers.size());
ASSERT(samplers[samplerIndex].active);
return samplers[samplerIndex].textureType;
}
gl::RangeUI ProgramExecutableD3D::getUsedSamplerRange(gl::ShaderType type) const
{
ASSERT(type != gl::ShaderType::InvalidEnum);
return mUsedShaderSamplerRanges[type];
}
void ProgramExecutableD3D::updateSamplerMapping()
{
ASSERT(mDirtySamplerMapping);
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (!d3dUniform->isSampler())
continue;
int count = d3dUniform->getArraySizeProduct();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!d3dUniform->isReferencedByShader(shaderType))
{
continue;
}
unsigned int firstIndex = d3dUniform->mShaderRegisterIndexes[shaderType];
std::vector<D3DSampler> &samplers = mShaderSamplers[shaderType];
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < samplers.size())
{
ASSERT(samplers[samplerIndex].active);
samplers[samplerIndex].logicalTextureUnit = d3dUniform->mSamplerData[i];
}
}
}
}
}
GLint ProgramExecutableD3D::getImageMapping(gl::ShaderType type,
unsigned int imageIndex,
bool readonly,
const gl::Caps &caps) const
{
GLint logicalImageUnit = -1;
ASSERT(imageIndex < static_cast<unsigned int>(caps.maxImageUnits));
if (readonly && imageIndex < mReadonlyImages[type].size() &&
mReadonlyImages[type][imageIndex].active)
{
logicalImageUnit = mReadonlyImages[type][imageIndex].logicalImageUnit;
}
else if (imageIndex < mImages[type].size() && mImages[type][imageIndex].active)
{
logicalImageUnit = mImages[type][imageIndex].logicalImageUnit;
}
if (logicalImageUnit >= 0 && logicalImageUnit < caps.maxImageUnits)
{
return logicalImageUnit;
}
return -1;
}
gl::RangeUI ProgramExecutableD3D::getUsedImageRange(gl::ShaderType type, bool readonly) const
{
return readonly ? mUsedReadonlyImageRange[type] : mUsedImageRange[type];
}
bool ProgramExecutableD3D::usesPointSpriteEmulation(RendererD3D *renderer) const
{
return mUsesPointSize && renderer->getMajorShaderModel() >= 4;
}
bool ProgramExecutableD3D::usesGeometryShaderForPointSpriteEmulation(RendererD3D *renderer) const
{
return usesPointSpriteEmulation(renderer);
}
bool ProgramExecutableD3D::usesGeometryShader(RendererD3D *renderer,
const gl::ProvokingVertexConvention provokingVertex,
const gl::PrimitiveMode drawMode) const
{
if (mHasMultiviewEnabled && !renderer->canSelectViewInVertexShader())
{
return true;
}
if (drawMode != gl::PrimitiveMode::Points)
{
if (!mUsesFlatInterpolation)
{
return false;
}
return provokingVertex == gl::ProvokingVertexConvention::LastVertexConvention;
}
return usesGeometryShaderForPointSpriteEmulation(renderer);
}
angle::Result ProgramExecutableD3D::getVertexExecutableForCachedInputLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExectuable,
gl::InfoLog *infoLog)
{
if (mCachedVertexExecutableIndex.valid())
{
*outExectuable =
mVertexExecutables[mCachedVertexExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
// Generate new dynamic layout with attribute conversions
std::string vertexHLSL = DynamicHLSL::GenerateVertexShaderForInputLayout(
renderer, mShaderHLSL[gl::ShaderType::Vertex], mCachedInputLayout,
mExecutable->getProgramInputs(), mShaderStorageBlocks[gl::ShaderType::Vertex],
mPixelShaderKey.size());
std::string finalVertexHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Vertex, mAttachedShaders[gl::ShaderType::Vertex], vertexHLSL,
mImage2DUniforms[gl::ShaderType::Vertex], mImage2DBindLayoutCache[gl::ShaderType::Vertex],
static_cast<unsigned int>(mPixelShaderKey.size()));
// Generate new vertex executable
ShaderExecutableD3D *vertexExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(
context, *currentInfoLog, finalVertexHLSL, gl::ShaderType::Vertex, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
mShaderWorkarounds[gl::ShaderType::Vertex], &vertexExecutable));
if (vertexExecutable)
{
mVertexExecutables.push_back(std::unique_ptr<D3DVertexExecutable>(
new D3DVertexExecutable(mCachedInputLayout, mCachedVertexSignature, vertexExecutable)));
mCachedVertexExecutableIndex = mVertexExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic vertex executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExectuable = vertexExecutable;
return angle::Result::Continue;
}
angle::Result ProgramExecutableD3D::getGeometryExecutableForPrimitiveType(
d3d::Context *context,
RendererD3D *renderer,
const gl::Caps &caps,
gl::ProvokingVertexConvention provokingVertex,
gl::PrimitiveMode drawMode,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
if (outExecutable)
{
*outExecutable = nullptr;
}
// Return a null shader if the current rendering doesn't use a geometry shader
if (!usesGeometryShader(renderer, provokingVertex, drawMode))
{
return angle::Result::Continue;
}
gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode);
if (mGeometryExecutables[geometryShaderType])
{
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return angle::Result::Continue;
}
std::string geometryHLSL = DynamicHLSL::GenerateGeometryShaderHLSL(
renderer, caps, geometryShaderType, renderer->presentPathFastEnabled(),
mHasMultiviewEnabled, renderer->canSelectViewInVertexShader(),
usesGeometryShaderForPointSpriteEmulation(renderer), mGeometryShaderPreamble);
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ShaderExecutableD3D *geometryExecutable = nullptr;
angle::Result result = renderer->compileToExecutable(
context, *currentInfoLog, geometryHLSL, gl::ShaderType::Geometry, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
CompilerWorkaroundsD3D(), &geometryExecutable);
if (!infoLog && result == angle::Result::Stop)
{
ERR() << "Error compiling dynamic geometry executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
if (geometryExecutable != nullptr)
{
mGeometryExecutables[geometryShaderType].reset(geometryExecutable);
}
if (outExecutable)
{
*outExecutable = mGeometryExecutables[geometryShaderType].get();
}
return result;
}
angle::Result ProgramExecutableD3D::getPixelExecutableForCachedOutputLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
if (mCachedPixelExecutableIndex.valid())
{
*outExecutable = mPixelExecutables[mCachedPixelExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
std::string pixelHLSL = DynamicHLSL::GeneratePixelShaderForOutputSignature(
renderer, mShaderHLSL[gl::ShaderType::Fragment], mPixelShaderKey, mFragDepthUsage,
mUsesSampleMask, mPixelShaderOutputLayoutCache,
mShaderStorageBlocks[gl::ShaderType::Fragment], mPixelShaderKey.size());
std::string finalPixelHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Fragment, mAttachedShaders[gl::ShaderType::Fragment], pixelHLSL,
mImage2DUniforms[gl::ShaderType::Fragment],
mImage2DBindLayoutCache[gl::ShaderType::Fragment],
static_cast<unsigned int>(mPixelShaderKey.size()));
// Generate new pixel executable
ShaderExecutableD3D *pixelExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(
context, *currentInfoLog, finalPixelHLSL, gl::ShaderType::Fragment, mStreamOutVaryings,
mExecutable->getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS,
mShaderWorkarounds[gl::ShaderType::Fragment], &pixelExecutable));
if (pixelExecutable)
{
mPixelExecutables.push_back(std::unique_ptr<D3DPixelExecutable>(new D3DPixelExecutable(
mPixelShaderOutputLayoutCache, mImage2DBindLayoutCache[gl::ShaderType::Fragment],
pixelExecutable)));
mCachedPixelExecutableIndex = mPixelExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic pixel executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExecutable = pixelExecutable;
return angle::Result::Continue;
}
angle::Result ProgramExecutableD3D::getComputeExecutableForImage2DBindLayout(
d3d::Context *context,
RendererD3D *renderer,
ShaderExecutableD3D **outExecutable,
gl::InfoLog *infoLog)
{
ANGLE_TRACE_EVENT0("gpu.angle",
"ProgramExecutableD3D::getComputeExecutableForImage2DBindLayout");
if (mCachedComputeExecutableIndex.valid())
{
*outExecutable =
mComputeExecutables[mCachedComputeExecutableIndex.value()]->shaderExecutable();
return angle::Result::Continue;
}
std::string finalComputeHLSL = DynamicHLSL::GenerateShaderForImage2DBindSignature(
*this, gl::ShaderType::Compute, mAttachedShaders[gl::ShaderType::Compute],
mShaderHLSL[gl::ShaderType::Compute], mImage2DUniforms[gl::ShaderType::Compute],
mImage2DBindLayoutCache[gl::ShaderType::Compute], 0u);
// Generate new compute executable
ShaderExecutableD3D *computeExecutable = nullptr;
gl::InfoLog tempInfoLog;
gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog;
ANGLE_TRY(renderer->compileToExecutable(context, *currentInfoLog, finalComputeHLSL,
gl::ShaderType::Compute, std::vector<D3DVarying>(),
false, CompilerWorkaroundsD3D(), &computeExecutable));
if (computeExecutable)
{
mComputeExecutables.push_back(std::unique_ptr<D3DComputeExecutable>(
new D3DComputeExecutable(mImage2DBindLayoutCache[gl::ShaderType::Compute],
std::unique_ptr<ShaderExecutableD3D>(computeExecutable))));
mCachedComputeExecutableIndex = mComputeExecutables.size() - 1;
}
else if (!infoLog)
{
ERR() << "Error compiling dynamic compute executable:" << std::endl
<< tempInfoLog.str() << std::endl;
}
*outExecutable = computeExecutable;
return angle::Result::Continue;
}
bool ProgramExecutableD3D::hasNamedUniform(const std::string &name)
{
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->name == name)
{
return true;
}
}
return false;
}
void ProgramExecutableD3D::initAttribLocationsToD3DSemantic(
const gl::SharedCompiledShaderState &vertexShader)
{
if (!vertexShader)
{
return;
}
// Init semantic index
int semanticIndex = 0;
for (const sh::ShaderVariable &attribute : vertexShader->activeAttributes)
{
int regCount = gl::VariableRegisterCount(attribute.type);
GLuint location = mExecutable->getAttributeLocation(attribute.name);
ASSERT(location != std::numeric_limits<GLuint>::max());
for (int reg = 0; reg < regCount; ++reg)
{
mAttribLocationToD3DSemantic[location + reg] = semanticIndex++;
}
}
}
void ProgramExecutableD3D::initializeUniformBlocks()
{
if (mExecutable->getUniformBlocks().empty())
{
return;
}
ASSERT(mD3DUniformBlocks.empty());
// Assign registers and update sizes.
for (const gl::InterfaceBlock &uniformBlock : mExecutable->getUniformBlocks())
{
unsigned int uniformBlockElement =
uniformBlock.pod.isArray ? uniformBlock.pod.arrayElement : 0;
D3DUniformBlock d3dUniformBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (uniformBlock.isActive(shaderType))
{
ASSERT(mAttachedShaders[shaderType]);
unsigned int baseRegister =
mAttachedShaders[shaderType]->getUniformBlockRegister(uniformBlock.name);
d3dUniformBlock.mShaderRegisterIndexes[shaderType] =
baseRegister + uniformBlockElement;
bool useStructuredBuffer =
mAttachedShaders[shaderType]->shouldUniformBlockUseStructuredBuffer(
uniformBlock.name);
if (useStructuredBuffer)
{
d3dUniformBlock.mUseStructuredBuffers[shaderType] = true;
d3dUniformBlock.mByteWidths[shaderType] = uniformBlock.pod.dataSize;
d3dUniformBlock.mStructureByteStrides[shaderType] =
uniformBlock.pod.firstFieldArraySize == 0u
? uniformBlock.pod.dataSize
: uniformBlock.pod.dataSize / uniformBlock.pod.firstFieldArraySize;
}
}
}
mD3DUniformBlocks.push_back(d3dUniformBlock);
}
}
void ProgramExecutableD3D::initializeShaderStorageBlocks(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
if (mExecutable->getShaderStorageBlocks().empty())
{
return;
}
ASSERT(mD3DShaderStorageBlocks.empty());
// Assign registers and update sizes.
for (const gl::InterfaceBlock &shaderStorageBlock : mExecutable->getShaderStorageBlocks())
{
unsigned int shaderStorageBlockElement =
shaderStorageBlock.pod.isArray ? shaderStorageBlock.pod.arrayElement : 0;
D3DInterfaceBlock d3dShaderStorageBlock;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (shaderStorageBlock.isActive(shaderType))
{
ASSERT(mAttachedShaders[shaderType]);
unsigned int baseRegister =
mAttachedShaders[shaderType]->getShaderStorageBlockRegister(
shaderStorageBlock.name);
d3dShaderStorageBlock.mShaderRegisterIndexes[shaderType] =
baseRegister + shaderStorageBlockElement;
}
}
mD3DShaderStorageBlocks.push_back(d3dShaderStorageBlock);
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const gl::SharedCompiledShaderState &shader = shaders[shaderType];
if (!shader)
{
continue;
}
for (const sh::InterfaceBlock &ssbo : shader->shaderStorageBlocks)
{
if (!ssbo.active)
{
continue;
}
ShaderStorageBlock block;
block.name = !ssbo.instanceName.empty() ? ssbo.instanceName : ssbo.name;
block.arraySize = ssbo.isArray() ? ssbo.arraySize : 0;
block.registerIndex =
mAttachedShaders[shaderType]->getShaderStorageBlockRegister(ssbo.name);
mShaderStorageBlocks[shaderType].push_back(block);
}
}
}
void ProgramExecutableD3D::initializeUniformStorage(RendererD3D *renderer,
const gl::ShaderBitSet &availableShaderStages)
{
// Compute total default block size
gl::ShaderMap<unsigned int> shaderRegisters = {};
for (const D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->isSampler())
{
continue;
}
for (gl::ShaderType shaderType : availableShaderStages)
{
if (d3dUniform->isReferencedByShader(shaderType))
{
shaderRegisters[shaderType] = std::max(
shaderRegisters[shaderType],
d3dUniform->mShaderRegisterIndexes[shaderType] + d3dUniform->registerCount);
}
}
}
// We only reset uniform storages for the shader stages available in the program (attached
// shaders in ProgramExecutableD3D::link() and linkedShaderStages in
// ProgramExecutableD3D::load()).
for (gl::ShaderType shaderType : availableShaderStages)
{
mShaderUniformStorages[shaderType].reset(
renderer->createUniformStorage(shaderRegisters[shaderType] * 16u));
}
// Iterate the uniforms again to assign data pointers to default block uniforms.
for (D3DUniform *d3dUniform : mD3DUniforms)
{
if (d3dUniform->isSampler())
{
d3dUniform->mSamplerData.resize(d3dUniform->getArraySizeProduct(), 0);
continue;
}
for (gl::ShaderType shaderType : availableShaderStages)
{
if (d3dUniform->isReferencedByShader(shaderType))
{
d3dUniform->mShaderData[shaderType] =
mShaderUniformStorages[shaderType]->getDataPointer(
d3dUniform->mShaderRegisterIndexes[shaderType],
d3dUniform->registerElement);
}
}
}
}
void ProgramExecutableD3D::updateCachedInputLayoutFromShader(
RendererD3D *renderer,
const gl::SharedCompiledShaderState &vertexShader)
{
GetDefaultInputLayoutFromShader(vertexShader, &mCachedInputLayout);
D3DVertexExecutable::getSignature(renderer, mCachedInputLayout, &mCachedVertexSignature);
updateCachedVertexExecutableIndex();
}
void ProgramExecutableD3D::updateCachedOutputLayoutFromShader()
{
GetDefaultOutputLayoutFromShader(mPixelShaderKey, &mPixelShaderOutputLayoutCache);
updateCachedPixelExecutableIndex();
}
void ProgramExecutableD3D::updateCachedImage2DBindLayoutFromShader(gl::ShaderType shaderType)
{
GetDefaultImage2DBindLayoutFromShader(mImage2DUniforms[shaderType],
&mImage2DBindLayoutCache[shaderType]);
switch (shaderType)
{
case gl::ShaderType::Compute:
updateCachedComputeExecutableIndex();
break;
case gl::ShaderType::Fragment:
updateCachedPixelExecutableIndex();
break;
case gl::ShaderType::Vertex:
updateCachedVertexExecutableIndex();
break;
default:
ASSERT(false);
break;
}
}
void ProgramExecutableD3D::updateCachedInputLayout(RendererD3D *renderer,
UniqueSerial associatedSerial,
const gl::State &state)
{
if (mCurrentVertexArrayStateSerial == associatedSerial)
{
return;
}
mCurrentVertexArrayStateSerial = associatedSerial;
mCachedInputLayout.clear();
const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes();
const gl::AttributesMask &attributesMask = mExecutable->getActiveAttribLocationsMask();
for (size_t locationIndex : attributesMask)
{
int d3dSemantic = mAttribLocationToD3DSemantic[locationIndex];
if (d3dSemantic != -1)
{
if (mCachedInputLayout.size() < static_cast<size_t>(d3dSemantic + 1))
{
mCachedInputLayout.resize(d3dSemantic + 1, angle::FormatID::NONE);
}
mCachedInputLayout[d3dSemantic] =
GetVertexFormatID(vertexAttributes[locationIndex],
state.getVertexAttribCurrentValue(locationIndex).Type);
}
}
D3DVertexExecutable::getSignature(renderer, mCachedInputLayout, &mCachedVertexSignature);
updateCachedVertexExecutableIndex();
}
void ProgramExecutableD3D::updateCachedOutputLayout(const gl::Context *context,
const gl::Framebuffer *framebuffer)
{
mPixelShaderOutputLayoutCache.clear();
FramebufferD3D *fboD3D = GetImplAs<FramebufferD3D>(framebuffer);
const auto &colorbuffers = fboD3D->getColorAttachmentsForRender(context);
for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment)
{
const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment];
if (colorbuffer)
{
auto binding = colorbuffer->getBinding() == GL_BACK ? GL_COLOR_ATTACHMENT0
: colorbuffer->getBinding();
size_t maxIndex = binding != GL_NONE ? GetMaxOutputIndex(mPixelShaderKey,
binding - GL_COLOR_ATTACHMENT0)
: 0;
mPixelShaderOutputLayoutCache.insert(mPixelShaderOutputLayoutCache.end(), maxIndex + 1,
binding);
}
else
{
mPixelShaderOutputLayoutCache.push_back(GL_NONE);
}
}
updateCachedPixelExecutableIndex();
}
void ProgramExecutableD3D::updateCachedImage2DBindLayout(const gl::Context *context,
const gl::ShaderType shaderType)
{
const auto &glState = context->getState();
for (auto &image2DBindLayout : mImage2DBindLayoutCache[shaderType])
{
const gl::ImageUnit &imageUnit = glState.getImageUnit(image2DBindLayout.first);
if (imageUnit.texture.get())
{
image2DBindLayout.second = imageUnit.texture->getType();
}
else
{
image2DBindLayout.second = gl::TextureType::_2D;
}
}
switch (shaderType)
{
case gl::ShaderType::Vertex:
updateCachedVertexExecutableIndex();
break;
case gl::ShaderType::Fragment:
updateCachedPixelExecutableIndex();
break;
case gl::ShaderType::Compute:
updateCachedComputeExecutableIndex();
break;
default:
ASSERT(false);
break;
}
}
void ProgramExecutableD3D::updateCachedVertexExecutableIndex()
{
mCachedVertexExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++)
{
if (mVertexExecutables[executableIndex]->matchesSignature(mCachedVertexSignature))
{
mCachedVertexExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateCachedPixelExecutableIndex()
{
mCachedPixelExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++)
{
if (mPixelExecutables[executableIndex]->matchesSignature(
mPixelShaderOutputLayoutCache, mImage2DBindLayoutCache[gl::ShaderType::Fragment]))
{
mCachedPixelExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateCachedComputeExecutableIndex()
{
mCachedComputeExecutableIndex.reset();
for (size_t executableIndex = 0; executableIndex < mComputeExecutables.size();
executableIndex++)
{
if (mComputeExecutables[executableIndex]->matchesSignature(
mImage2DBindLayoutCache[gl::ShaderType::Compute]))
{
mCachedComputeExecutableIndex = executableIndex;
break;
}
}
}
void ProgramExecutableD3D::updateUniformBufferCache(const gl::Caps &caps)
{
if (mExecutable->getUniformBlocks().empty())
{
return;
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mShaderUBOCaches[shaderType].clear();
mShaderUBOCachesUseSB[shaderType].clear();
}
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mD3DUniformBlocks.size();
uniformBlockIndex++)
{
const D3DUniformBlock &uniformBlock = mD3DUniformBlocks[uniformBlockIndex];
GLuint blockBinding = mExecutable->getUniformBlockBinding(uniformBlockIndex);
// Unnecessary to apply an unreferenced standard or shared UBO
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!uniformBlock.activeInShader(shaderType))
{
continue;
}
bool useStructuredBuffer = uniformBlock.mUseStructuredBuffers[shaderType];
unsigned int registerIndex = uniformBlock.mShaderRegisterIndexes[shaderType];
if (useStructuredBuffer)
{
D3DUBOCacheUseSB cacheUseSB;
cacheUseSB.registerIndex = registerIndex;
cacheUseSB.binding = blockBinding;
cacheUseSB.byteWidth = uniformBlock.mByteWidths[shaderType];
cacheUseSB.structureByteStride = uniformBlock.mStructureByteStrides[shaderType];
mShaderUBOCachesUseSB[shaderType].push_back(cacheUseSB);
}
else
{
ASSERT(registerIndex <
static_cast<unsigned int>(caps.maxShaderUniformBlocks[shaderType]));
D3DUBOCache cache;
cache.registerIndex = registerIndex;
cache.binding = blockBinding;
mShaderUBOCaches[shaderType].push_back(cache);
}
}
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
GLuint uniformBlockCount = static_cast<GLuint>(mShaderUBOCaches[shaderType].size() +
mShaderUBOCachesUseSB[shaderType].size());
ASSERT(uniformBlockCount <=
static_cast<unsigned int>(caps.maxShaderUniformBlocks[shaderType]));
}
}
void ProgramExecutableD3D::defineUniformsAndAssignRegisters(
RendererD3D *renderer,
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
D3DUniformMap uniformMap;
gl::ShaderBitSet attachedShaders;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
const gl::SharedCompiledShaderState &shader = shaders[shaderType];
if (shader)
{
for (const sh::ShaderVariable &uniform : shader->uniforms)
{
if (uniform.active)
{
defineUniformBase(shader->shaderType, uniform, &uniformMap);
}
}
attachedShaders.set(shader->shaderType);
}
}
// Initialize the D3DUniform list to mirror the indexing of the GL layer.
for (GLuint index = 0; index < static_cast<GLuint>(mExecutable->getUniforms().size()); index++)
{
const gl::LinkedUniform &glUniform = mExecutable->getUniforms()[index];
if (!glUniform.isInDefaultBlock())
continue;
std::string name = mExecutable->getUniformNames()[index];
if (glUniform.isArray())
{
// In the program state, array uniform names include [0] as in the program resource
// spec. Here we don't include it.
// TODO([email protected]): consider using the same uniform naming here as in the GL
// layer.
ASSERT(angle::EndsWith(name, "[0]"));
name.resize(name.length() - 3);
}
auto mapEntry = uniformMap.find(name);
ASSERT(mapEntry != uniformMap.end());
mD3DUniforms.push_back(mapEntry->second);
}
assignAllSamplerRegisters(shaders);
assignAllAtomicCounterRegisters();
// Samplers and readonly images share shader input resource slot, adjust low value of
// readonly image range.
for (gl::ShaderType shaderType : {gl::ShaderType::Compute, gl::ShaderType::Fragment})
{
mUsedReadonlyImageRange[shaderType] =
gl::RangeUI(mUsedShaderSamplerRanges[shaderType].high(),
mUsedShaderSamplerRanges[shaderType].high());
// Atomic counter buffers and non-readonly images share input resource slots
mUsedImageRange[shaderType] = gl::RangeUI(mUsedAtomicCounterRange[shaderType].high(),
mUsedAtomicCounterRange[shaderType].high());
}
assignAllImageRegisters();
initializeUniformStorage(renderer, attachedShaders);
}
void ProgramExecutableD3D::defineUniformBase(gl::ShaderType shaderType,
const sh::ShaderVariable &uniform,
D3DUniformMap *uniformMap)
{
sh::StubBlockEncoder stubEncoder;
// Samplers get their registers assigned in assignAllSamplerRegisters, and images get their
// registers assigned in assignAllImageRegisters.
if (gl::IsSamplerType(uniform.type))
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::Texture, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
return;
}
if (gl::IsImageType(uniform.type))
{
if (uniform.readonly)
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::Texture, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
else
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::UnorderedAccessView,
&stubEncoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
mImageBindingMap[uniform.name] = uniform.binding;
return;
}
if (uniform.isBuiltIn() && !uniform.isEmulatedBuiltIn())
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::None, &stubEncoder,
uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
return;
}
else if (gl::IsAtomicCounterType(uniform.type))
{
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::UnorderedAccessView,
&stubEncoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
mAtomicBindingMap[uniform.name] = uniform.binding;
return;
}
const SharedCompiledShaderStateD3D &shaderD3D = mAttachedShaders[shaderType];
unsigned int startRegister = shaderD3D->getUniformRegister(uniform.name);
ShShaderOutput outputType = shaderD3D->compilerOutputType;
sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType), true);
encoder.skipRegisters(startRegister);
UniformEncodingVisitorD3D visitor(shaderType, HLSLRegisterType::None, &encoder, uniformMap);
sh::TraverseShaderVariable(uniform, false, &visitor);
}
void ProgramExecutableD3D::assignAllSamplerRegisters(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders)
{
for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex)
{
if (mD3DUniforms[uniformIndex]->isSampler())
{
assignSamplerRegisters(shaders, uniformIndex);
}
}
}
void ProgramExecutableD3D::assignSamplerRegisters(
const gl::ShaderMap<gl::SharedCompiledShaderState> &shaders,
size_t uniformIndex)
{
D3DUniform *d3dUniform = mD3DUniforms[uniformIndex];
ASSERT(d3dUniform->isSampler());
// If the uniform is an array of arrays, then we have separate entries for each inner array in
// mD3DUniforms. However, the sampler register info is stored in the shader only for the
// outermost array.
std::vector<unsigned int> subscripts;
const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts);
unsigned int registerOffset = mExecutable->getUniforms()[uniformIndex].pod.parentArrayIndex *
d3dUniform->getArraySizeProduct();
bool hasUniform = false;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (!shaders[shaderType])
{
continue;
}
const SharedCompiledShaderStateD3D &shaderD3D = mAttachedShaders[shaderType];
if (shaderD3D->hasUniform(baseName))
{
d3dUniform->mShaderRegisterIndexes[shaderType] =
shaderD3D->getUniformRegister(baseName) + registerOffset;
ASSERT(d3dUniform->mShaderRegisterIndexes[shaderType] != GL_INVALID_VALUE);
AssignSamplers(d3dUniform->mShaderRegisterIndexes[shaderType], d3dUniform->typeInfo,
d3dUniform->getArraySizeProduct(), mShaderSamplers[shaderType],
&mUsedShaderSamplerRanges[shaderType]);
hasUniform = true;
}
}
ASSERT(hasUniform);
}
// static
void ProgramExecutableD3D::AssignSamplers(unsigned int startSamplerIndex,
const gl::UniformTypeInfo &typeInfo,
unsigned int samplerCount,
std::vector<D3DSampler> &outSamplers,
gl::RangeUI *outUsedRange)
{
unsigned int samplerIndex = startSamplerIndex;
do
{
ASSERT(samplerIndex < outSamplers.size());
D3DSampler *sampler = &outSamplers[samplerIndex];
sampler->active = true;
sampler->textureType = gl::FromGLenum<gl::TextureType>(typeInfo.textureType);
sampler->logicalTextureUnit = 0;
outUsedRange->extend(samplerIndex);
samplerIndex++;
} while (samplerIndex < startSamplerIndex + samplerCount);
}
void ProgramExecutableD3D::assignAllImageRegisters()
{
for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex)
{
if (mD3DUniforms[uniformIndex]->isImage() && !mD3DUniforms[uniformIndex]->isImage2D())
{
assignImageRegisters(uniformIndex);
}
}
}
void ProgramExecutableD3D::assignAllAtomicCounterRegisters()
{
if (mAtomicBindingMap.empty())
{
return;
}
const SharedCompiledShaderStateD3D &computeShader = mAttachedShaders[gl::ShaderType::Compute];
if (computeShader)
{
auto &registerIndices = mComputeAtomicCounterBufferRegisterIndices;
for (auto &atomicBinding : mAtomicBindingMap)
{
ASSERT(computeShader->hasUniform(atomicBinding.first));
unsigned int currentRegister = computeShader->getUniformRegister(atomicBinding.first);
ASSERT(currentRegister != GL_INVALID_INDEX);
const int kBinding = atomicBinding.second;
registerIndices[kBinding] = currentRegister;
mUsedAtomicCounterRange[gl::ShaderType::Compute].extend(currentRegister);
}
}
else
{
// Implement atomic counters for non-compute shaders
// http://anglebug.com/42260658
UNIMPLEMENTED();
}
}
void ProgramExecutableD3D::assignImageRegisters(size_t uniformIndex)
{
D3DUniform *d3dUniform = mD3DUniforms[uniformIndex];
ASSERT(d3dUniform->isImage());
// If the uniform is an array of arrays, then we have separate entries for each inner array in
// mD3DUniforms. However, the image register info is stored in the shader only for the
// outermost array.
std::vector<unsigned int> subscripts;
const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts);
unsigned int registerOffset = mExecutable->getUniforms()[uniformIndex].pod.parentArrayIndex *
d3dUniform->getArraySizeProduct();
const SharedCompiledShaderStateD3D &computeShader = mAttachedShaders[gl::ShaderType::Compute];
if (computeShader)
{
ASSERT(computeShader->hasUniform(baseName));
d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] =
computeShader->getUniformRegister(baseName) + registerOffset;
ASSERT(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] != GL_INVALID_INDEX);
auto bindingIter = mImageBindingMap.find(baseName);
ASSERT(bindingIter != mImageBindingMap.end());
if (d3dUniform->regType == HLSLRegisterType::Texture)
{
AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute],
bindingIter->second, d3dUniform->getArraySizeProduct(),
mReadonlyImages[gl::ShaderType::Compute],
&mUsedReadonlyImageRange[gl::ShaderType::Compute]);
}
else if (d3dUniform->regType == HLSLRegisterType::UnorderedAccessView)
{
AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute],
bindingIter->second, d3dUniform->getArraySizeProduct(),
mImages[gl::ShaderType::Compute],
&mUsedImageRange[gl::ShaderType::Compute]);
}
else
{
UNREACHABLE();
}
}
else
{
// TODO([email protected]): Implement image variables in vertex shader and pixel shader.
UNIMPLEMENTED();
}
}
// static
void ProgramExecutableD3D::AssignImages(unsigned int startImageIndex,
int startLogicalImageUnit,
unsigned int imageCount,
std::vector<D3DImage> &outImages,
gl::RangeUI *outUsedRange)
{
unsigned int imageIndex = startImageIndex;
// If declare without a binding qualifier, any uniform image variable (include all elements of
// unbound image array) shoud be bound to unit zero.
if (startLogicalImageUnit == -1)
{
ASSERT(imageIndex < outImages.size());
D3DImage *image = &outImages[imageIndex];
image->active = true;
image->logicalImageUnit = 0;
outUsedRange->extend(imageIndex);
return;
}
unsigned int logcalImageUnit = startLogicalImageUnit;
do
{
ASSERT(imageIndex < outImages.size());
D3DImage *image = &outImages[imageIndex];
image->active = true;
image->logicalImageUnit = logcalImageUnit;
outUsedRange->extend(imageIndex);
imageIndex++;
logcalImageUnit++;
} while (imageIndex < startImageIndex + imageCount);
}
void ProgramExecutableD3D::assignImage2DRegisters(gl::ShaderType shaderType,
unsigned int startImageIndex,
int startLogicalImageUnit,
bool readonly)
{
if (readonly)
{
AssignImages(startImageIndex, startLogicalImageUnit, 1, mReadonlyImages[shaderType],
&mUsedReadonlyImageRange[shaderType]);
}
else
{
AssignImages(startImageIndex, startLogicalImageUnit, 1, mImages[shaderType],
&mUsedImageRange[shaderType]);
}
}
void ProgramExecutableD3D::gatherTransformFeedbackVaryings(
RendererD3D *renderer,
const gl::VaryingPacking &varyingPacking,
const std::vector<std::string> &tfVaryingNames,
const BuiltinInfo &builtins)
{
const std::string &varyingSemantic =
GetVaryingSemantic(renderer->getMajorShaderModel(), usesPointSize());
// Gather the linked varyings that are used for transform feedback, they should all exist.
mStreamOutVaryings.clear();
for (unsigned int outputSlot = 0; outputSlot < static_cast<unsigned int>(tfVaryingNames.size());
++outputSlot)
{
const auto &tfVaryingName = tfVaryingNames[outputSlot];
if (tfVaryingName == "gl_Position")
{
if (builtins.glPosition.enabled)
{
mStreamOutVaryings.emplace_back(builtins.glPosition.semantic,
builtins.glPosition.indexOrSize, 4, outputSlot);
}
}
else if (tfVaryingName == "gl_FragCoord")
{
if (builtins.glFragCoord.enabled)
{
mStreamOutVaryings.emplace_back(builtins.glFragCoord.semantic,
builtins.glFragCoord.indexOrSize, 4, outputSlot);
}
}
else if (tfVaryingName == "gl_PointSize")
{
if (builtins.glPointSize.enabled)
{
mStreamOutVaryings.emplace_back("PSIZE", 0, 1, outputSlot);
}
}
else
{
const auto &registerInfos = varyingPacking.getRegisterList();
for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex)
{
const auto &registerInfo = registerInfos[registerIndex];
const auto &varying = registerInfo.packedVarying->varying();
GLenum transposedType = gl::TransposeMatrixType(varying.type);
int componentCount = gl::VariableColumnCount(transposedType);
ASSERT(!varying.isBuiltIn() && !varying.isStruct());
// There can be more than one register assigned to a particular varying, and each
// register needs its own stream out entry.
if (registerInfo.tfVaryingName() == tfVaryingName)
{
mStreamOutVaryings.emplace_back(varyingSemantic, registerIndex, componentCount,
outputSlot);
}
}
}
}
}
D3DUniform *ProgramExecutableD3D::getD3DUniformFromLocation(
const gl::VariableLocation &locationInfo)
{
return mD3DUniforms[locationInfo.index];
}
const D3DUniform *ProgramExecutableD3D::getD3DUniformFromLocation(
const gl::VariableLocation &locationInfo) const
{
return mD3DUniforms[locationInfo.index];
}
unsigned int ProgramExecutableD3D::issueSerial()
{
return mCurrentSerial++;
}
void ProgramExecutableD3D::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT);
}
void ProgramExecutableD3D::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC2);
}
void ProgramExecutableD3D::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC3);
}
void ProgramExecutableD3D::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformInternal(location, count, v, GL_FLOAT_VEC4);
}
void ProgramExecutableD3D::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<2, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 2>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<3, 4>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfvInternal<4, 3>(location, count, transpose, value);
}
void ProgramExecutableD3D::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT);
}
void ProgramExecutableD3D::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC2);
}
void ProgramExecutableD3D::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC3);
}
void ProgramExecutableD3D::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformInternal(location, count, v, GL_INT_VEC4);
}
void ProgramExecutableD3D::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT);
}
void ProgramExecutableD3D::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramExecutableD3D::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramExecutableD3D::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC4);
}
// Assume count is already clamped.
template <typename T>
void ProgramExecutableD3D::setUniformImpl(D3DUniform *targetUniform,
const gl::VariableLocation &locationInfo,
GLsizei count,
const T *v,
uint8_t *targetState,
GLenum uniformType)
{
const int components = targetUniform->typeInfo.componentCount;
const unsigned int arrayElementOffset = locationInfo.arrayIndex;
const int blockSize = 4;
if (targetUniform->typeInfo.type == uniformType)
{
T *dest = reinterpret_cast<T *>(targetState) + arrayElementOffset * blockSize;
const T *source = v;
// If the component is equal to the block size, we can optimize to a single memcpy.
// Otherwise, we have to do partial block writes.
if (components == blockSize)
{
memcpy(dest, source, components * count * sizeof(T));
}
else
{
for (GLint i = 0; i < count; i++, dest += blockSize, source += components)
{
memcpy(dest, source, components * sizeof(T));
}
}
}
else
{
ASSERT(targetUniform->typeInfo.type == gl::VariableBoolVectorType(uniformType));
GLint *boolParams = reinterpret_cast<GLint *>(targetState) + arrayElementOffset * 4;
for (GLint i = 0; i < count; i++)
{
GLint *dest = boolParams + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
dest[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE;
}
}
}
}
template <typename T>
void ProgramExecutableD3D::setUniformInternal(GLint location,
GLsizei count,
const T *v,
GLenum uniformType)
{
const gl::VariableLocation &locationInfo = mExecutable->getUniformLocations()[location];
D3DUniform *targetUniform = mD3DUniforms[locationInfo.index];
if (targetUniform->typeInfo.isSampler)
{
ASSERT(uniformType == GL_INT);
size_t size = count * sizeof(T);
GLint *dest = &targetUniform->mSamplerData[locationInfo.arrayIndex];
if (memcmp(dest, v, size) != 0)
{
memcpy(dest, v, size);
mDirtySamplerMapping = true;
}
return;
}
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
uint8_t *targetState = targetUniform->mShaderData[shaderType];
if (targetState)
{
setUniformImpl(targetUniform, locationInfo, count, v, targetState, uniformType);
mShaderUniformsDirty.set(shaderType);
}
}
}
template <int cols, int rows>
void ProgramExecutableD3D::setUniformMatrixfvInternal(GLint location,
GLsizei countIn,
GLboolean transpose,
const GLfloat *value)
{
const gl::VariableLocation &uniformLocation = mExecutable->getUniformLocations()[location];
D3DUniform *targetUniform = getD3DUniformFromLocation(uniformLocation);
unsigned int arrayElementOffset = uniformLocation.arrayIndex;
unsigned int elementCount = targetUniform->getArraySizeProduct();
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (targetUniform->mShaderData[shaderType])
{
SetFloatUniformMatrixHLSL<cols, rows>::Run(arrayElementOffset, elementCount, countIn,
transpose, value,
targetUniform->mShaderData[shaderType]);
mShaderUniformsDirty.set(shaderType);
}
}
}
template <typename DestT>
void ProgramExecutableD3D::getUniformInternal(GLint location, DestT *dataOut) const
{
const gl::VariableLocation &locationInfo = mExecutable->getUniformLocations()[location];
const gl::LinkedUniform &uniform = mExecutable->getUniforms()[locationInfo.index];
const D3DUniform *targetUniform = getD3DUniformFromLocation(locationInfo);
const uint8_t *srcPointer = targetUniform->getDataPtrToElement(locationInfo.arrayIndex);
if (gl::IsMatrixType(uniform.getType()))
{
GetMatrixUniform(uniform.getType(), dataOut, reinterpret_cast<const DestT *>(srcPointer),
true);
}
else
{
memcpy(dataOut, srcPointer, uniform.getElementSize());
}
}
void ProgramExecutableD3D::getUniformfv(const gl::Context *context,
GLint location,
GLfloat *params) const
{
getUniformInternal(location, params);
}
void ProgramExecutableD3D::getUniformiv(const gl::Context *context,
GLint location,
GLint *params) const
{
getUniformInternal(location, params);
}
void ProgramExecutableD3D::getUniformuiv(const gl::Context *context,
GLint location,
GLuint *params) const
{
getUniformInternal(location, params);
}
} // namespace rx