| // Copyright (c) 2015-2020 The Khronos Group Inc. |
| // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights |
| // reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This file contains a disassembler: It converts a SPIR-V binary |
| // to text. |
| |
| #include "source/disassemble.h" |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstring> |
| #include <iomanip> |
| #include <ios> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <stack> |
| #include <unordered_map> |
| #include <utility> |
| |
| #include "source/assembly_grammar.h" |
| #include "source/binary.h" |
| #include "source/diagnostic.h" |
| #include "source/ext_inst.h" |
| #include "source/opcode.h" |
| #include "source/parsed_operand.h" |
| #include "source/print.h" |
| #include "source/spirv_constant.h" |
| #include "source/spirv_endian.h" |
| #include "source/util/hex_float.h" |
| #include "source/util/make_unique.h" |
| #include "spirv-tools/libspirv.h" |
| |
| namespace spvtools { |
| namespace { |
| |
| // Indices to ControlFlowGraph's list of blocks from one block to its successors |
| struct BlockSuccessors { |
| // Merge block in OpLoopMerge and OpSelectionMerge |
| uint32_t merge_block_id = 0; |
| // The continue block in OpLoopMerge |
| uint32_t continue_block_id = 0; |
| // The true and false blocks in OpBranchConditional |
| uint32_t true_block_id = 0; |
| uint32_t false_block_id = 0; |
| // The body block of a loop, as specified by OpBranch after a merge |
| // instruction |
| uint32_t body_block_id = 0; |
| // The same-nesting-level block that follows this one, indicated by an |
| // OpBranch with no merge instruction. |
| uint32_t next_block_id = 0; |
| // The cases (including default) of an OpSwitch |
| std::vector<uint32_t> case_block_ids; |
| }; |
| |
| class ParsedInstruction { |
| public: |
| ParsedInstruction(const spv_parsed_instruction_t* instruction) { |
| // Make a copy of the parsed instruction, including stable memory for its |
| // operands. |
| instruction_ = *instruction; |
| operands_ = |
| std::make_unique<spv_parsed_operand_t[]>(instruction->num_operands); |
| memcpy(operands_.get(), instruction->operands, |
| instruction->num_operands * sizeof(*instruction->operands)); |
| instruction_.operands = operands_.get(); |
| } |
| |
| const spv_parsed_instruction_t* get() const { return &instruction_; } |
| |
| private: |
| spv_parsed_instruction_t instruction_; |
| std::unique_ptr<spv_parsed_operand_t[]> operands_; |
| }; |
| |
| // One block in the CFG |
| struct SingleBlock { |
| // The byte offset in the SPIR-V where the block starts. Used for printing in |
| // a comment. |
| size_t byte_offset; |
| |
| // Block instructions |
| std::vector<ParsedInstruction> instructions; |
| |
| // Successors of this block |
| BlockSuccessors successors; |
| |
| // The nesting level for this block. |
| uint32_t nest_level = 0; |
| bool nest_level_assigned = false; |
| |
| // Whether the block was reachable |
| bool reachable = false; |
| }; |
| |
| // CFG for one function |
| struct ControlFlowGraph { |
| std::vector<SingleBlock> blocks; |
| }; |
| |
| // A Disassembler instance converts a SPIR-V binary to its assembly |
| // representation. |
| class Disassembler { |
| public: |
| Disassembler(const AssemblyGrammar& grammar, uint32_t options, |
| NameMapper name_mapper) |
| : print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)), |
| nested_indent_( |
| spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NESTED_INDENT, options)), |
| reorder_blocks_( |
| spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_REORDER_BLOCKS, options)), |
| text_(), |
| out_(print_ ? out_stream() : out_stream(text_)), |
| instruction_disassembler_(grammar, out_.get(), options, name_mapper), |
| header_(!spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NO_HEADER, options)), |
| byte_offset_(0) {} |
| |
| // Emits the assembly header for the module, and sets up internal state |
| // so subsequent callbacks can handle the cases where the entire module |
| // is either big-endian or little-endian. |
| spv_result_t HandleHeader(spv_endianness_t endian, uint32_t version, |
| uint32_t generator, uint32_t id_bound, |
| uint32_t schema); |
| // Emits the assembly text for the given instruction. |
| spv_result_t HandleInstruction(const spv_parsed_instruction_t& inst); |
| |
| // If not printing, populates text_result with the accumulated text. |
| // Returns SPV_SUCCESS on success. |
| spv_result_t SaveTextResult(spv_text* text_result) const; |
| |
| private: |
| void EmitCFG(); |
| |
| const bool print_; // Should we also print to the standard output stream? |
| const bool nested_indent_; // Should the blocks be indented according to the |
| // control flow structure? |
| const bool |
| reorder_blocks_; // Should the blocks be reordered for readability? |
| spv_endianness_t endian_; // The detected endianness of the binary. |
| std::stringstream text_; // Captures the text, if not printing. |
| out_stream out_; // The Output stream. Either to text_ or standard output. |
| disassemble::InstructionDisassembler instruction_disassembler_; |
| const bool header_; // Should we output header as the leading comment? |
| size_t byte_offset_; // The number of bytes processed so far. |
| bool inserted_decoration_space_ = false; |
| bool inserted_debug_space_ = false; |
| bool inserted_type_space_ = false; |
| |
| // The CFG for the current function |
| ControlFlowGraph current_function_cfg_; |
| }; |
| |
| spv_result_t Disassembler::HandleHeader(spv_endianness_t endian, |
| uint32_t version, uint32_t generator, |
| uint32_t id_bound, uint32_t schema) { |
| endian_ = endian; |
| |
| if (header_) { |
| instruction_disassembler_.EmitHeaderSpirv(); |
| instruction_disassembler_.EmitHeaderVersion(version); |
| instruction_disassembler_.EmitHeaderGenerator(generator); |
| instruction_disassembler_.EmitHeaderIdBound(id_bound); |
| instruction_disassembler_.EmitHeaderSchema(schema); |
| } |
| |
| byte_offset_ = SPV_INDEX_INSTRUCTION * sizeof(uint32_t); |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t Disassembler::HandleInstruction( |
| const spv_parsed_instruction_t& inst) { |
| instruction_disassembler_.EmitSectionComment(inst, inserted_decoration_space_, |
| inserted_debug_space_, |
| inserted_type_space_); |
| |
| // When nesting needs to be calculated or when the blocks are reordered, we |
| // have to have the full picture of the CFG first. Defer processing of the |
| // instructions until the entire function is visited. This is not done |
| // without those options (even if simpler) to improve debuggability; for |
| // example to be able to see whatever is parsed so far even if there is a |
| // parse error. |
| if (nested_indent_ || reorder_blocks_) { |
| switch (static_cast<spv::Op>(inst.opcode)) { |
| case spv::Op::OpLabel: { |
| // Add a new block to the CFG |
| SingleBlock new_block; |
| new_block.byte_offset = byte_offset_; |
| new_block.instructions.emplace_back(&inst); |
| current_function_cfg_.blocks.push_back(std::move(new_block)); |
| break; |
| } |
| case spv::Op::OpFunctionEnd: |
| // Process the CFG and output the instructions |
| EmitCFG(); |
| // Output OpFunctionEnd itself too |
| [[fallthrough]]; |
| default: |
| if (!current_function_cfg_.blocks.empty()) { |
| // If in a function, stash the instruction for later. |
| current_function_cfg_.blocks.back().instructions.emplace_back(&inst); |
| } else { |
| // Otherwise emit the instruction right away. |
| instruction_disassembler_.EmitInstruction(inst, byte_offset_); |
| } |
| break; |
| } |
| } else { |
| instruction_disassembler_.EmitInstruction(inst, byte_offset_); |
| } |
| |
| byte_offset_ += inst.num_words * sizeof(uint32_t); |
| |
| return SPV_SUCCESS; |
| } |
| |
| // Helper to get the operand of an instruction as an id. |
| uint32_t GetOperand(const spv_parsed_instruction_t* instruction, |
| uint32_t operand) { |
| return instruction->words[instruction->operands[operand].offset]; |
| } |
| |
| std::unordered_map<uint32_t, uint32_t> BuildControlFlowGraph( |
| ControlFlowGraph& cfg) { |
| std::unordered_map<uint32_t, uint32_t> id_to_index; |
| |
| for (size_t index = 0; index < cfg.blocks.size(); ++index) { |
| SingleBlock& block = cfg.blocks[index]; |
| |
| // For future use, build the ID->index map |
| assert(static_cast<spv::Op>(block.instructions[0].get()->opcode) == |
| spv::Op::OpLabel); |
| const uint32_t id = block.instructions[0].get()->result_id; |
| |
| id_to_index[id] = static_cast<uint32_t>(index); |
| |
| // Look for a merge instruction first. The function of OpBranch depends on |
| // that. |
| if (block.instructions.size() >= 3) { |
| const spv_parsed_instruction_t* maybe_merge = |
| block.instructions[block.instructions.size() - 2].get(); |
| |
| switch (static_cast<spv::Op>(maybe_merge->opcode)) { |
| case spv::Op::OpLoopMerge: |
| block.successors.merge_block_id = GetOperand(maybe_merge, 0); |
| block.successors.continue_block_id = GetOperand(maybe_merge, 1); |
| break; |
| |
| case spv::Op::OpSelectionMerge: |
| block.successors.merge_block_id = GetOperand(maybe_merge, 0); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Then look at the last instruction; it must be a branch |
| assert(block.instructions.size() >= 2); |
| |
| const spv_parsed_instruction_t* branch = block.instructions.back().get(); |
| switch (static_cast<spv::Op>(branch->opcode)) { |
| case spv::Op::OpBranch: |
| if (block.successors.merge_block_id != 0) { |
| block.successors.body_block_id = GetOperand(branch, 0); |
| } else { |
| block.successors.next_block_id = GetOperand(branch, 0); |
| } |
| break; |
| |
| case spv::Op::OpBranchConditional: |
| block.successors.true_block_id = GetOperand(branch, 1); |
| block.successors.false_block_id = GetOperand(branch, 2); |
| break; |
| |
| case spv::Op::OpSwitch: |
| for (uint32_t case_index = 1; case_index < branch->num_operands; |
| case_index += 2) { |
| block.successors.case_block_ids.push_back( |
| GetOperand(branch, case_index)); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return id_to_index; |
| } |
| |
| // Helper to deal with nesting and non-existing ids / previously-assigned |
| // levels. It assigns a given nesting level `level` to the block identified by |
| // `id` (unless that block already has a nesting level assigned). |
| void Nest(ControlFlowGraph& cfg, |
| const std::unordered_map<uint32_t, uint32_t>& id_to_index, |
| uint32_t id, uint32_t level) { |
| if (id == 0) { |
| return; |
| } |
| |
| const uint32_t block_index = id_to_index.at(id); |
| SingleBlock& block = cfg.blocks[block_index]; |
| |
| if (!block.nest_level_assigned) { |
| block.nest_level = level; |
| block.nest_level_assigned = true; |
| } |
| } |
| |
| // For a given block, assign nesting level to its successors. |
| void NestSuccessors(ControlFlowGraph& cfg, const SingleBlock& block, |
| const std::unordered_map<uint32_t, uint32_t>& id_to_index) { |
| assert(block.nest_level_assigned); |
| |
| // Nest loops as such: |
| // |
| // %loop = OpLabel |
| // OpLoopMerge %merge %cont ... |
| // OpBranch %body |
| // %body = OpLabel |
| // Op... |
| // %cont = OpLabel |
| // Op... |
| // %merge = OpLabel |
| // Op... |
| // |
| // Nest conditional branches as such: |
| // |
| // %header = OpLabel |
| // OpSelectionMerge %merge ... |
| // OpBranchConditional ... %true %false |
| // %true = OpLabel |
| // Op... |
| // %false = OpLabel |
| // Op... |
| // %merge = OpLabel |
| // Op... |
| // |
| // Nest switch/case as such: |
| // |
| // %header = OpLabel |
| // OpSelectionMerge %merge ... |
| // OpSwitch ... %default ... %case0 ... %case1 ... |
| // %default = OpLabel |
| // Op... |
| // %case0 = OpLabel |
| // Op... |
| // %case1 = OpLabel |
| // Op... |
| // ... |
| // %merge = OpLabel |
| // Op... |
| // |
| // The following can be observed: |
| // |
| // - In all cases, the merge block has the same nesting as this block |
| // - The continue block of loops is nested 1 level deeper |
| // - The body/branches/cases are nested 2 levels deeper |
| // |
| // Back branches to the header block, branches to the merge block, etc |
| // are correctly handled by processing the header block first (that is |
| // _this_ block, already processed), then following the above rules |
| // (in the same order) for any block that is not already processed. |
| Nest(cfg, id_to_index, block.successors.merge_block_id, block.nest_level); |
| Nest(cfg, id_to_index, block.successors.continue_block_id, |
| block.nest_level + 1); |
| Nest(cfg, id_to_index, block.successors.true_block_id, block.nest_level + 2); |
| Nest(cfg, id_to_index, block.successors.false_block_id, block.nest_level + 2); |
| Nest(cfg, id_to_index, block.successors.body_block_id, block.nest_level + 2); |
| Nest(cfg, id_to_index, block.successors.next_block_id, block.nest_level); |
| for (uint32_t case_block_id : block.successors.case_block_ids) { |
| Nest(cfg, id_to_index, case_block_id, block.nest_level + 2); |
| } |
| } |
| |
| struct StackEntry { |
| // The index of the block (in ControlFlowGraph::blocks) to process. |
| uint32_t block_index; |
| // Whether this is the pre or post visit of the block. Because a post-visit |
| // traversal is needed, the same block is pushed back on the stack on |
| // pre-visit so it can be visited again on post-visit. |
| bool post_visit = false; |
| }; |
| |
| // Helper to deal with DFS traversal and non-existing ids |
| void VisitSuccesor(std::stack<StackEntry>* dfs_stack, |
| const std::unordered_map<uint32_t, uint32_t>& id_to_index, |
| uint32_t id) { |
| if (id != 0) { |
| dfs_stack->push({id_to_index.at(id), false}); |
| } |
| } |
| |
| // Given the control flow graph, calculates and returns the reverse post-order |
| // ordering of the blocks. The blocks are then disassembled in that order for |
| // readability. |
| std::vector<uint32_t> OrderBlocks( |
| ControlFlowGraph& cfg, |
| const std::unordered_map<uint32_t, uint32_t>& id_to_index) { |
| std::vector<uint32_t> post_order; |
| |
| // Nest level of a function's first block is 0. |
| cfg.blocks[0].nest_level = 0; |
| cfg.blocks[0].nest_level_assigned = true; |
| |
| // Stack of block indices as they are visited. |
| std::stack<StackEntry> dfs_stack; |
| dfs_stack.push({0, false}); |
| |
| std::set<uint32_t> visited; |
| |
| while (!dfs_stack.empty()) { |
| const uint32_t block_index = dfs_stack.top().block_index; |
| const bool post_visit = dfs_stack.top().post_visit; |
| dfs_stack.pop(); |
| |
| // If this is the second time the block is visited, that's the post-order |
| // visit. |
| if (post_visit) { |
| post_order.push_back(block_index); |
| continue; |
| } |
| |
| // If already visited, another path got to it first (like a case |
| // fallthrough), avoid reprocessing it. |
| if (visited.count(block_index) > 0) { |
| continue; |
| } |
| visited.insert(block_index); |
| |
| // Push it back in the stack for post-order visit |
| dfs_stack.push({block_index, true}); |
| |
| SingleBlock& block = cfg.blocks[block_index]; |
| |
| // Assign nest levels of successors right away. The successors are either |
| // nested under this block, or are back or forward edges to blocks outside |
| // this nesting level (no farther than the merge block), whose nesting |
| // levels are already assigned before this block is visited. |
| NestSuccessors(cfg, block, id_to_index); |
| block.reachable = true; |
| |
| // The post-order visit yields the order in which the blocks are naturally |
| // ordered _backwards_. So blocks to be ordered last should be visited |
| // first. In other words, they should be pushed to the DFS stack last. |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.true_block_id); |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.false_block_id); |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.body_block_id); |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.next_block_id); |
| for (uint32_t case_block_id : block.successors.case_block_ids) { |
| VisitSuccesor(&dfs_stack, id_to_index, case_block_id); |
| } |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.continue_block_id); |
| VisitSuccesor(&dfs_stack, id_to_index, block.successors.merge_block_id); |
| } |
| |
| std::vector<uint32_t> order(post_order.rbegin(), post_order.rend()); |
| |
| // Finally, dump all unreachable blocks at the end |
| for (size_t index = 0; index < cfg.blocks.size(); ++index) { |
| SingleBlock& block = cfg.blocks[index]; |
| |
| if (!block.reachable) { |
| order.push_back(static_cast<uint32_t>(index)); |
| block.nest_level = 0; |
| block.nest_level_assigned = true; |
| } |
| } |
| |
| return order; |
| } |
| |
| void Disassembler::EmitCFG() { |
| // Build the CFG edges. At the same time, build an ID->block index map to |
| // simplify building the CFG edges. |
| const std::unordered_map<uint32_t, uint32_t> id_to_index = |
| BuildControlFlowGraph(current_function_cfg_); |
| |
| // Walk the CFG in reverse post-order to find the best ordering of blocks for |
| // presentation |
| std::vector<uint32_t> block_order = |
| OrderBlocks(current_function_cfg_, id_to_index); |
| assert(block_order.size() == current_function_cfg_.blocks.size()); |
| |
| // Walk the CFG either in block order or input order based on whether the |
| // reorder_blocks_ option is given. |
| for (uint32_t index = 0; index < current_function_cfg_.blocks.size(); |
| ++index) { |
| const uint32_t block_index = reorder_blocks_ ? block_order[index] : index; |
| const SingleBlock& block = current_function_cfg_.blocks[block_index]; |
| |
| // Emit instructions for this block |
| size_t byte_offset = block.byte_offset; |
| assert(block.nest_level_assigned); |
| |
| for (const ParsedInstruction& inst : block.instructions) { |
| instruction_disassembler_.EmitInstructionInBlock(*inst.get(), byte_offset, |
| block.nest_level); |
| byte_offset += inst.get()->num_words * sizeof(uint32_t); |
| } |
| } |
| |
| current_function_cfg_.blocks.clear(); |
| } |
| |
| spv_result_t Disassembler::SaveTextResult(spv_text* text_result) const { |
| if (!print_) { |
| size_t length = text_.str().size(); |
| char* str = new char[length + 1]; |
| if (!str) return SPV_ERROR_OUT_OF_MEMORY; |
| strncpy(str, text_.str().c_str(), length + 1); |
| spv_text text = new spv_text_t(); |
| if (!text) { |
| delete[] str; |
| return SPV_ERROR_OUT_OF_MEMORY; |
| } |
| text->str = str; |
| text->length = length; |
| *text_result = text; |
| } |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t DisassembleHeader(void* user_data, spv_endianness_t endian, |
| uint32_t /* magic */, uint32_t version, |
| uint32_t generator, uint32_t id_bound, |
| uint32_t schema) { |
| assert(user_data); |
| auto disassembler = static_cast<Disassembler*>(user_data); |
| return disassembler->HandleHeader(endian, version, generator, id_bound, |
| schema); |
| } |
| |
| spv_result_t DisassembleInstruction( |
| void* user_data, const spv_parsed_instruction_t* parsed_instruction) { |
| assert(user_data); |
| auto disassembler = static_cast<Disassembler*>(user_data); |
| return disassembler->HandleInstruction(*parsed_instruction); |
| } |
| |
| // Simple wrapper class to provide extra data necessary for targeted |
| // instruction disassembly. |
| class WrappedDisassembler { |
| public: |
| WrappedDisassembler(Disassembler* dis, const uint32_t* binary, size_t wc) |
| : disassembler_(dis), inst_binary_(binary), word_count_(wc) {} |
| |
| Disassembler* disassembler() { return disassembler_; } |
| const uint32_t* inst_binary() const { return inst_binary_; } |
| size_t word_count() const { return word_count_; } |
| |
| private: |
| Disassembler* disassembler_; |
| const uint32_t* inst_binary_; |
| const size_t word_count_; |
| }; |
| |
| spv_result_t DisassembleTargetHeader(void* user_data, spv_endianness_t endian, |
| uint32_t /* magic */, uint32_t version, |
| uint32_t generator, uint32_t id_bound, |
| uint32_t schema) { |
| assert(user_data); |
| auto wrapped = static_cast<WrappedDisassembler*>(user_data); |
| return wrapped->disassembler()->HandleHeader(endian, version, generator, |
| id_bound, schema); |
| } |
| |
| spv_result_t DisassembleTargetInstruction( |
| void* user_data, const spv_parsed_instruction_t* parsed_instruction) { |
| assert(user_data); |
| auto wrapped = static_cast<WrappedDisassembler*>(user_data); |
| // Check if this is the instruction we want to disassemble. |
| if (wrapped->word_count() == parsed_instruction->num_words && |
| std::equal(wrapped->inst_binary(), |
| wrapped->inst_binary() + wrapped->word_count(), |
| parsed_instruction->words)) { |
| // Found the target instruction. Disassemble it and signal that we should |
| // stop searching so we don't output the same instruction again. |
| if (auto error = |
| wrapped->disassembler()->HandleInstruction(*parsed_instruction)) |
| return error; |
| return SPV_REQUESTED_TERMINATION; |
| } |
| return SPV_SUCCESS; |
| } |
| |
| uint32_t GetLineLengthWithoutColor(const std::string line) { |
| // Currently, every added color is in the form \x1b...m, so instead of doing a |
| // lot of string comparisons with spvtools::clr::* strings, we just ignore |
| // those ranges. |
| uint32_t length = 0; |
| for (size_t i = 0; i < line.size(); ++i) { |
| if (line[i] == '\x1b') { |
| do { |
| ++i; |
| } while (i < line.size() && line[i] != 'm'); |
| continue; |
| } |
| |
| ++length; |
| } |
| |
| return length; |
| } |
| |
| constexpr int kStandardIndent = 15; |
| constexpr int kBlockNestIndent = 2; |
| constexpr int kBlockBodyIndentOffset = 2; |
| constexpr uint32_t kCommentColumn = 50; |
| } // namespace |
| |
| namespace disassemble { |
| InstructionDisassembler::InstructionDisassembler(const AssemblyGrammar& grammar, |
| std::ostream& stream, |
| uint32_t options, |
| NameMapper name_mapper) |
| : grammar_(grammar), |
| stream_(stream), |
| print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)), |
| color_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options)), |
| indent_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_INDENT, options) |
| ? kStandardIndent |
| : 0), |
| nested_indent_( |
| spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_NESTED_INDENT, options)), |
| comment_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COMMENT, options)), |
| show_byte_offset_( |
| spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET, options)), |
| name_mapper_(std::move(name_mapper)), |
| last_instruction_comment_alignment_(0) {} |
| |
| void InstructionDisassembler::EmitHeaderSpirv() { stream_ << "; SPIR-V\n"; } |
| |
| void InstructionDisassembler::EmitHeaderVersion(uint32_t version) { |
| stream_ << "; Version: " << SPV_SPIRV_VERSION_MAJOR_PART(version) << "." |
| << SPV_SPIRV_VERSION_MINOR_PART(version) << "\n"; |
| } |
| |
| void InstructionDisassembler::EmitHeaderGenerator(uint32_t generator) { |
| const char* generator_tool = |
| spvGeneratorStr(SPV_GENERATOR_TOOL_PART(generator)); |
| stream_ << "; Generator: " << generator_tool; |
| // For unknown tools, print the numeric tool value. |
| if (0 == strcmp("Unknown", generator_tool)) { |
| stream_ << "(" << SPV_GENERATOR_TOOL_PART(generator) << ")"; |
| } |
| // Print the miscellaneous part of the generator word on the same |
| // line as the tool name. |
| stream_ << "; " << SPV_GENERATOR_MISC_PART(generator) << "\n"; |
| } |
| |
| void InstructionDisassembler::EmitHeaderIdBound(uint32_t id_bound) { |
| stream_ << "; Bound: " << id_bound << "\n"; |
| } |
| |
| void InstructionDisassembler::EmitHeaderSchema(uint32_t schema) { |
| stream_ << "; Schema: " << schema << "\n"; |
| } |
| |
| void InstructionDisassembler::EmitInstruction( |
| const spv_parsed_instruction_t& inst, size_t inst_byte_offset) { |
| EmitInstructionImpl(inst, inst_byte_offset, 0, false); |
| } |
| |
| void InstructionDisassembler::EmitInstructionInBlock( |
| const spv_parsed_instruction_t& inst, size_t inst_byte_offset, |
| uint32_t block_indent) { |
| EmitInstructionImpl(inst, inst_byte_offset, block_indent, true); |
| } |
| |
| void InstructionDisassembler::EmitInstructionImpl( |
| const spv_parsed_instruction_t& inst, size_t inst_byte_offset, |
| uint32_t block_indent, bool is_in_block) { |
| auto opcode = static_cast<spv::Op>(inst.opcode); |
| |
| // To better align the comments (if any), write the instruction to a line |
| // first so its length can be readily available. |
| std::ostringstream line; |
| |
| if (nested_indent_ && opcode == spv::Op::OpLabel) { |
| // Separate the blocks by an empty line to make them easier to separate |
| stream_ << std::endl; |
| } |
| |
| if (inst.result_id) { |
| SetBlue(); |
| const std::string id_name = name_mapper_(inst.result_id); |
| if (indent_) |
| line << std::setw(std::max(0, indent_ - 3 - int(id_name.size()))); |
| line << "%" << id_name; |
| ResetColor(); |
| line << " = "; |
| } else { |
| line << std::string(indent_, ' '); |
| } |
| |
| if (nested_indent_ && is_in_block) { |
| // Output OpLabel at the specified nest level, and instructions inside |
| // blocks nested a little more. |
| uint32_t indent = block_indent; |
| bool body_indent = opcode != spv::Op::OpLabel; |
| |
| line << std::string( |
| indent * kBlockNestIndent + (body_indent ? kBlockBodyIndentOffset : 0), |
| ' '); |
| } |
| |
| line << "Op" << spvOpcodeString(opcode); |
| |
| for (uint16_t i = 0; i < inst.num_operands; i++) { |
| const spv_operand_type_t type = inst.operands[i].type; |
| assert(type != SPV_OPERAND_TYPE_NONE); |
| if (type == SPV_OPERAND_TYPE_RESULT_ID) continue; |
| line << " "; |
| EmitOperand(line, inst, i); |
| } |
| |
| // For the sake of comment generation, store information from some |
| // instructions for the future. |
| if (comment_) { |
| GenerateCommentForDecoratedId(inst); |
| } |
| |
| std::ostringstream comments; |
| const char* comment_separator = ""; |
| |
| if (show_byte_offset_) { |
| SetGrey(comments); |
| auto saved_flags = comments.flags(); |
| auto saved_fill = comments.fill(); |
| comments << comment_separator << "0x" << std::setw(8) << std::hex |
| << std::setfill('0') << inst_byte_offset; |
| comments.flags(saved_flags); |
| comments.fill(saved_fill); |
| ResetColor(comments); |
| comment_separator = ", "; |
| } |
| |
| if (comment_ && opcode == spv::Op::OpName) { |
| const spv_parsed_operand_t& operand = inst.operands[0]; |
| const uint32_t word = inst.words[operand.offset]; |
| comments << comment_separator << "id %" << word; |
| comment_separator = ", "; |
| } |
| |
| if (comment_ && inst.result_id && id_comments_.count(inst.result_id) > 0) { |
| comments << comment_separator << id_comments_[inst.result_id].str(); |
| comment_separator = ", "; |
| } |
| |
| stream_ << line.str(); |
| |
| if (!comments.str().empty()) { |
| // Align the comments |
| const uint32_t line_length = GetLineLengthWithoutColor(line.str()); |
| uint32_t align = std::max( |
| {line_length + 2, last_instruction_comment_alignment_, kCommentColumn}); |
| // Round up the alignment to a multiple of 4 for more niceness. |
| align = (align + 3) & ~0x3u; |
| last_instruction_comment_alignment_ = align; |
| |
| stream_ << std::string(align - line_length, ' ') << "; " << comments.str(); |
| } else { |
| last_instruction_comment_alignment_ = 0; |
| } |
| |
| stream_ << "\n"; |
| } |
| |
| void InstructionDisassembler::GenerateCommentForDecoratedId( |
| const spv_parsed_instruction_t& inst) { |
| assert(comment_); |
| auto opcode = static_cast<spv::Op>(inst.opcode); |
| |
| std::ostringstream partial; |
| uint32_t id = 0; |
| const char* separator = ""; |
| |
| switch (opcode) { |
| case spv::Op::OpDecorate: |
| // Take everything after `OpDecorate %id` and associate it with id. |
| id = inst.words[inst.operands[0].offset]; |
| for (uint16_t i = 1; i < inst.num_operands; i++) { |
| partial << separator; |
| separator = " "; |
| EmitOperand(partial, inst, i); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (id == 0) { |
| return; |
| } |
| |
| // Add the new comment to the comments of this id |
| std::ostringstream& id_comment = id_comments_[id]; |
| if (!id_comment.str().empty()) { |
| id_comment << ", "; |
| } |
| id_comment << partial.str(); |
| } |
| |
| void InstructionDisassembler::EmitSectionComment( |
| const spv_parsed_instruction_t& inst, bool& inserted_decoration_space, |
| bool& inserted_debug_space, bool& inserted_type_space) { |
| auto opcode = static_cast<spv::Op>(inst.opcode); |
| if (comment_ && opcode == spv::Op::OpFunction) { |
| stream_ << std::endl; |
| if (nested_indent_) { |
| // Double the empty lines between Function sections since nested_indent_ |
| // also separates blocks by a blank. |
| stream_ << std::endl; |
| } |
| stream_ << std::string(indent_, ' '); |
| stream_ << "; Function " << name_mapper_(inst.result_id) << std::endl; |
| } |
| if (comment_ && !inserted_decoration_space && spvOpcodeIsDecoration(opcode)) { |
| inserted_decoration_space = true; |
| stream_ << std::endl; |
| stream_ << std::string(indent_, ' '); |
| stream_ << "; Annotations" << std::endl; |
| } |
| if (comment_ && !inserted_debug_space && spvOpcodeIsDebug(opcode)) { |
| inserted_debug_space = true; |
| stream_ << std::endl; |
| stream_ << std::string(indent_, ' '); |
| stream_ << "; Debug Information" << std::endl; |
| } |
| if (comment_ && !inserted_type_space && spvOpcodeGeneratesType(opcode)) { |
| inserted_type_space = true; |
| stream_ << std::endl; |
| stream_ << std::string(indent_, ' '); |
| stream_ << "; Types, variables and constants" << std::endl; |
| } |
| } |
| |
| void InstructionDisassembler::EmitOperand(std::ostream& stream, |
| const spv_parsed_instruction_t& inst, |
| const uint16_t operand_index) const { |
| assert(operand_index < inst.num_operands); |
| const spv_parsed_operand_t& operand = inst.operands[operand_index]; |
| const uint32_t word = inst.words[operand.offset]; |
| switch (operand.type) { |
| case SPV_OPERAND_TYPE_RESULT_ID: |
| assert(false && "<result-id> is not supposed to be handled here"); |
| SetBlue(stream); |
| stream << "%" << name_mapper_(word); |
| break; |
| case SPV_OPERAND_TYPE_ID: |
| case SPV_OPERAND_TYPE_TYPE_ID: |
| case SPV_OPERAND_TYPE_SCOPE_ID: |
| case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID: |
| SetYellow(stream); |
| stream << "%" << name_mapper_(word); |
| break; |
| case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: { |
| spv_ext_inst_desc ext_inst; |
| SetRed(stream); |
| if (grammar_.lookupExtInst(inst.ext_inst_type, word, &ext_inst) == |
| SPV_SUCCESS) { |
| stream << ext_inst->name; |
| } else { |
| if (!spvExtInstIsNonSemantic(inst.ext_inst_type)) { |
| assert(false && "should have caught this earlier"); |
| } else { |
| // for non-semantic instruction sets we can just print the number |
| stream << word; |
| } |
| } |
| } break; |
| case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: { |
| spv_opcode_desc opcode_desc; |
| if (grammar_.lookupOpcode(spv::Op(word), &opcode_desc)) |
| assert(false && "should have caught this earlier"); |
| SetRed(stream); |
| stream << opcode_desc->name; |
| } break; |
| case SPV_OPERAND_TYPE_LITERAL_INTEGER: |
| case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: |
| case SPV_OPERAND_TYPE_LITERAL_FLOAT: { |
| SetRed(stream); |
| EmitNumericLiteral(&stream, inst, operand); |
| ResetColor(stream); |
| } break; |
| case SPV_OPERAND_TYPE_LITERAL_STRING: { |
| stream << "\""; |
| SetGreen(stream); |
| |
| std::string str = spvDecodeLiteralStringOperand(inst, operand_index); |
| for (char const& c : str) { |
| if (c == '"' || c == '\\') stream << '\\'; |
| stream << c; |
| } |
| ResetColor(stream); |
| stream << '"'; |
| } break; |
| case SPV_OPERAND_TYPE_CAPABILITY: |
| case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: |
| case SPV_OPERAND_TYPE_EXECUTION_MODEL: |
| case SPV_OPERAND_TYPE_ADDRESSING_MODEL: |
| case SPV_OPERAND_TYPE_MEMORY_MODEL: |
| case SPV_OPERAND_TYPE_EXECUTION_MODE: |
| case SPV_OPERAND_TYPE_STORAGE_CLASS: |
| case SPV_OPERAND_TYPE_DIMENSIONALITY: |
| case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: |
| case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: |
| case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT: |
| case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: |
| case SPV_OPERAND_TYPE_LINKAGE_TYPE: |
| case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: |
| case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: |
| case SPV_OPERAND_TYPE_DECORATION: |
| case SPV_OPERAND_TYPE_BUILT_IN: |
| case SPV_OPERAND_TYPE_GROUP_OPERATION: |
| case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: |
| case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: |
| case SPV_OPERAND_TYPE_RAY_FLAGS: |
| case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION: |
| case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE: |
| case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE: |
| case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
| case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE: |
| case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER: |
| case SPV_OPERAND_TYPE_DEBUG_OPERATION: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY: |
| case SPV_OPERAND_TYPE_FPDENORM_MODE: |
| case SPV_OPERAND_TYPE_FPOPERATION_MODE: |
| case SPV_OPERAND_TYPE_QUANTIZATION_MODES: |
| case SPV_OPERAND_TYPE_FPENCODING: |
| case SPV_OPERAND_TYPE_OVERFLOW_MODES: { |
| spv_operand_desc entry; |
| if (grammar_.lookupOperand(operand.type, word, &entry)) |
| assert(false && "should have caught this earlier"); |
| stream << entry->name; |
| } break; |
| case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: |
| case SPV_OPERAND_TYPE_FUNCTION_CONTROL: |
| case SPV_OPERAND_TYPE_LOOP_CONTROL: |
| case SPV_OPERAND_TYPE_IMAGE: |
| case SPV_OPERAND_TYPE_MEMORY_ACCESS: |
| case SPV_OPERAND_TYPE_SELECTION_CONTROL: |
| case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: |
| case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS: |
| case SPV_OPERAND_TYPE_RAW_ACCESS_CHAIN_OPERANDS: |
| EmitMaskOperand(stream, operand.type, word); |
| break; |
| default: |
| if (spvOperandIsConcreteMask(operand.type)) { |
| EmitMaskOperand(stream, operand.type, word); |
| } else if (spvOperandIsConcrete(operand.type)) { |
| spv_operand_desc entry; |
| if (grammar_.lookupOperand(operand.type, word, &entry)) |
| assert(false && "should have caught this earlier"); |
| stream << entry->name; |
| } else { |
| assert(false && "unhandled or invalid case"); |
| } |
| break; |
| } |
| ResetColor(stream); |
| } |
| |
| void InstructionDisassembler::EmitMaskOperand(std::ostream& stream, |
| const spv_operand_type_t type, |
| const uint32_t word) const { |
| // Scan the mask from least significant bit to most significant bit. For each |
| // set bit, emit the name of that bit. Separate multiple names with '|'. |
| uint32_t remaining_word = word; |
| uint32_t mask; |
| int num_emitted = 0; |
| for (mask = 1; remaining_word; mask <<= 1) { |
| if (remaining_word & mask) { |
| remaining_word ^= mask; |
| spv_operand_desc entry; |
| if (grammar_.lookupOperand(type, mask, &entry)) |
| assert(false && "should have caught this earlier"); |
| if (num_emitted) stream << "|"; |
| stream << entry->name; |
| num_emitted++; |
| } |
| } |
| if (!num_emitted) { |
| // An operand value of 0 was provided, so represent it by the name |
| // of the 0 value. In many cases, that's "None". |
| spv_operand_desc entry; |
| if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) |
| stream << entry->name; |
| } |
| } |
| |
| void InstructionDisassembler::ResetColor(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::reset{print_}; |
| } |
| void InstructionDisassembler::SetGrey(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::grey{print_}; |
| } |
| void InstructionDisassembler::SetBlue(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::blue{print_}; |
| } |
| void InstructionDisassembler::SetYellow(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::yellow{print_}; |
| } |
| void InstructionDisassembler::SetRed(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::red{print_}; |
| } |
| void InstructionDisassembler::SetGreen(std::ostream& stream) const { |
| if (color_) stream << spvtools::clr::green{print_}; |
| } |
| |
| void InstructionDisassembler::ResetColor() { ResetColor(stream_); } |
| void InstructionDisassembler::SetGrey() { SetGrey(stream_); } |
| void InstructionDisassembler::SetBlue() { SetBlue(stream_); } |
| void InstructionDisassembler::SetYellow() { SetYellow(stream_); } |
| void InstructionDisassembler::SetRed() { SetRed(stream_); } |
| void InstructionDisassembler::SetGreen() { SetGreen(stream_); } |
| } // namespace disassemble |
| |
| std::string spvInstructionBinaryToText(const spv_target_env env, |
| const uint32_t* instCode, |
| const size_t instWordCount, |
| const uint32_t* code, |
| const size_t wordCount, |
| const uint32_t options) { |
| spv_context context = spvContextCreate(env); |
| const AssemblyGrammar grammar(context); |
| if (!grammar.isValid()) { |
| spvContextDestroy(context); |
| return ""; |
| } |
| |
| // Generate friendly names for Ids if requested. |
| std::unique_ptr<FriendlyNameMapper> friendly_mapper; |
| NameMapper name_mapper = GetTrivialNameMapper(); |
| if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) { |
| friendly_mapper = MakeUnique<FriendlyNameMapper>(context, code, wordCount); |
| name_mapper = friendly_mapper->GetNameMapper(); |
| } |
| |
| // Now disassemble! |
| Disassembler disassembler(grammar, options, name_mapper); |
| WrappedDisassembler wrapped(&disassembler, instCode, instWordCount); |
| spvBinaryParse(context, &wrapped, code, wordCount, DisassembleTargetHeader, |
| DisassembleTargetInstruction, nullptr); |
| |
| spv_text text = nullptr; |
| std::string output; |
| if (disassembler.SaveTextResult(&text) == SPV_SUCCESS) { |
| output.assign(text->str, text->str + text->length); |
| // Drop trailing newline characters. |
| while (!output.empty() && output.back() == '\n') output.pop_back(); |
| } |
| spvTextDestroy(text); |
| spvContextDestroy(context); |
| |
| return output; |
| } |
| } // namespace spvtools |
| |
| spv_result_t spvBinaryToText(const spv_const_context context, |
| const uint32_t* code, const size_t wordCount, |
| const uint32_t options, spv_text* pText, |
| spv_diagnostic* pDiagnostic) { |
| spv_context_t hijack_context = *context; |
| if (pDiagnostic) { |
| *pDiagnostic = nullptr; |
| spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic); |
| } |
| |
| const spvtools::AssemblyGrammar grammar(&hijack_context); |
| if (!grammar.isValid()) return SPV_ERROR_INVALID_TABLE; |
| |
| // Generate friendly names for Ids if requested. |
| std::unique_ptr<spvtools::FriendlyNameMapper> friendly_mapper; |
| spvtools::NameMapper name_mapper = spvtools::GetTrivialNameMapper(); |
| if (options & SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) { |
| friendly_mapper = spvtools::MakeUnique<spvtools::FriendlyNameMapper>( |
| &hijack_context, code, wordCount); |
| name_mapper = friendly_mapper->GetNameMapper(); |
| } |
| |
| // Now disassemble! |
| spvtools::Disassembler disassembler(grammar, options, name_mapper); |
| if (auto error = |
| spvBinaryParse(&hijack_context, &disassembler, code, wordCount, |
| spvtools::DisassembleHeader, |
| spvtools::DisassembleInstruction, pDiagnostic)) { |
| return error; |
| } |
| |
| return disassembler.SaveTextResult(pText); |
| } |