| /* |
| * Single-precision erf(x) function. |
| * |
| * Copyright (c) 2020, Arm Limited. |
| * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception |
| */ |
| |
| #include <stdint.h> |
| #include <math.h> |
| #include "math_config.h" |
| |
| #define TwoOverSqrtPiMinusOne 0x1.06eba8p-3f |
| #define A __erff_data.erff_poly_A |
| #define B __erff_data.erff_poly_B |
| |
| /* Top 12 bits of a float. */ |
| static inline uint32_t |
| top12 (float x) |
| { |
| return asuint (x) >> 20; |
| } |
| |
| /* Efficient implementation of erff |
| using either a pure polynomial approximation or |
| the exponential of a polynomial. |
| Worst-case error is 1.09ulps at 0x1.c111acp-1. */ |
| float |
| erff (float x) |
| { |
| float r, x2, u; |
| |
| /* Get top word. */ |
| uint32_t ix = asuint (x); |
| uint32_t sign = ix >> 31; |
| uint32_t ia12 = top12 (x) & 0x7ff; |
| |
| /* Limit of both intervals is 0.875 for performance reasons but coefficients |
| computed on [0.0, 0.921875] and [0.921875, 4.0], which brought accuracy |
| from 0.94 to 1.1ulps. */ |
| if (ia12 < 0x3f6) |
| { /* a = |x| < 0.875. */ |
| |
| /* Tiny and subnormal cases. */ |
| if (unlikely (ia12 < 0x318)) |
| { /* |x| < 2^(-28). */ |
| if (unlikely (ia12 < 0x040)) |
| { /* |x| < 2^(-119). */ |
| float y = fmaf (TwoOverSqrtPiMinusOne, x, x); |
| return check_uflowf (y); |
| } |
| return x + TwoOverSqrtPiMinusOne * x; |
| } |
| |
| x2 = x * x; |
| |
| /* Normalized cases (|x| < 0.921875). Use Horner scheme for x+x*P(x^2). */ |
| r = A[5]; |
| r = fmaf (r, x2, A[4]); |
| r = fmaf (r, x2, A[3]); |
| r = fmaf (r, x2, A[2]); |
| r = fmaf (r, x2, A[1]); |
| r = fmaf (r, x2, A[0]); |
| r = fmaf (r, x, x); |
| } |
| else if (ia12 < 0x408) |
| { /* |x| < 4.0 - Use a custom Estrin scheme. */ |
| |
| float a = fabsf (x); |
| /* Start with Estrin scheme on high order (small magnitude) coefficients. */ |
| r = fmaf (B[6], a, B[5]); |
| u = fmaf (B[4], a, B[3]); |
| x2 = x * x; |
| r = fmaf (r, x2, u); |
| /* Then switch to pure Horner scheme. */ |
| r = fmaf (r, a, B[2]); |
| r = fmaf (r, a, B[1]); |
| r = fmaf (r, a, B[0]); |
| r = fmaf (r, a, a); |
| /* Single precision exponential with ~0.5ulps, |
| ensures erff has max. rel. error |
| < 1ulp on [0.921875, 4.0], |
| < 1.1ulps on [0.875, 4.0]. */ |
| r = expf (-r); |
| /* Explicit copysign (calling copysignf increases latency). */ |
| if (sign) |
| r = -1.0f + r; |
| else |
| r = 1.0f - r; |
| } |
| else |
| { /* |x| >= 4.0. */ |
| |
| /* Special cases : erff(nan)=nan, erff(+inf)=+1 and erff(-inf)=-1. */ |
| if (unlikely (ia12 >= 0x7f8)) |
| return (1.f - (float) ((ix >> 31) << 1)) + 1.f / x; |
| |
| /* Explicit copysign (calling copysignf increases latency). */ |
| if (sign) |
| r = -1.0f; |
| else |
| r = 1.0f; |
| } |
| return r; |
| } |