| // polynomial for approximating sin(x) |
| // |
| // Copyright (c) 2019, Arm Limited. |
| // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception |
| |
| deg = 7; // polynomial degree |
| a = -pi/4; // interval |
| b = pi/4; |
| |
| // find even polynomial with minimal abs error compared to sin(x)/x |
| |
| // account for /x |
| deg = deg-1; |
| |
| // f = sin(x)/x; |
| f = 1; |
| c = 1; |
| for i from 1 to 60 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*x^(2*i)/c; }; |
| |
| // return p that minimizes |f(x) - poly(x) - x^d*p(x)| |
| approx = proc(poly,d) { |
| return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10); |
| }; |
| |
| // first coeff is fixed, iteratively find optimal double prec coeffs |
| poly = 1; |
| for i from 1 to deg/2 do { |
| p = roundcoefficients(approx(poly,2*i), [|D ...|]); |
| poly = poly + x^(2*i)*coeff(p,0); |
| }; |
| |
| display = hexadecimal; |
| print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); |
| print("abs error:", accurateinfnorm(sin(x)-x*poly(x), [a;b], 30)); |
| print("in [",a,b,"]"); |
| print("coeffs:"); |
| for i from 0 to deg do coeff(poly,i); |