| // polynomial for approximating 2^x |
| // |
| // Copyright (c) 2019, Arm Limited. |
| // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception |
| |
| // exp2f parameters |
| deg = 3; // poly degree |
| N = 32; // table entries |
| b = 1/(2*N); // interval |
| a = -b; |
| |
| //// exp2 parameters |
| //deg = 5; // poly degree |
| //N = 128; // table entries |
| //b = 1/(2*N); // interval |
| //a = -b; |
| |
| // find polynomial with minimal relative error |
| |
| f = 2^x; |
| |
| // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| |
| approx = proc(poly,d) { |
| return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); |
| }; |
| // return p that minimizes |f(x) - poly(x) - x^d*p(x)| |
| approx_abs = proc(poly,d) { |
| return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); |
| }; |
| |
| // first coeff is fixed, iteratively find optimal double prec coeffs |
| poly = 1; |
| for i from 1 to deg do { |
| p = roundcoefficients(approx(poly,i), [|D ...|]); |
| // p = roundcoefficients(approx_abs(poly,i), [|D ...|]); |
| poly = poly + x^i*coeff(p,0); |
| }; |
| |
| display = hexadecimal; |
| print("rel error:", accurateinfnorm(1-poly(x)/2^x, [a;b], 30)); |
| print("abs error:", accurateinfnorm(2^x-poly(x), [a;b], 30)); |
| print("in [",a,b,"]"); |
| // double interval error for non-nearest rounding: |
| print("rel2 error:", accurateinfnorm(1-poly(x)/2^x, [2*a;2*b], 30)); |
| print("abs2 error:", accurateinfnorm(2^x-poly(x), [2*a;2*b], 30)); |
| print("in [",2*a,2*b,"]"); |
| print("coeffs:"); |
| for i from 0 to deg do coeff(poly,i); |