| // polynomial for approximating log(1+x) |
| // |
| // Copyright (c) 2019, Arm Limited. |
| // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception |
| |
| deg = 6; // poly degree |
| // interval ~= 1/(2*N), where N is the table entries |
| a = -0x1.fp-9; |
| b = 0x1.fp-9; |
| |
| // find log(1+x) polynomial with minimal absolute error |
| f = log(1+x); |
| |
| // return p that minimizes |f(x) - poly(x) - x^d*p(x)| |
| approx = proc(poly,d) { |
| return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); |
| }; |
| |
| // first coeff is fixed, iteratively find optimal double prec coeffs |
| poly = x; |
| for i from 2 to deg do { |
| p = roundcoefficients(approx(poly,i), [|D ...|]); |
| poly = poly + x^i*coeff(p,0); |
| }; |
| |
| display = hexadecimal; |
| print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30)); |
| // relative error computation fails if f(0)==0 |
| // g = f(x)/x = log(1+x)/x; using taylor series |
| g = 0; |
| for i from 0 to 60 do { g = g + (-x)^i/(i+1); }; |
| print("rel error:", accurateinfnorm(1-poly(x)/x/g(x), [a;b], 30)); |
| print("in [",a,b,"]"); |
| print("coeffs:"); |
| for i from 0 to deg do coeff(poly,i); |