| // polynomial for approximating e^x |
| // |
| // Copyright (c) 2019, Arm Limited. |
| // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception |
| |
| deg = 4; // poly degree |
| N = 128; // table entries |
| b = log(2)/(2*N); // interval |
| a = -b; |
| |
| // find polynomial with minimal abs error |
| |
| // return p that minimizes |exp(x) - poly(x) - x^d*p(x)| |
| approx = proc(poly,d) { |
| return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10); |
| }; |
| |
| // first 2 coeffs are fixed, iteratively find optimal double prec coeffs |
| poly = 1 + x; |
| for i from 2 to deg do { |
| p = roundcoefficients(approx(poly,i), [|D ...|]); |
| poly = poly + x^i*coeff(p,0); |
| }; |
| |
| display = hexadecimal; |
| print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30)); |
| print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30)); |
| print("in [",a,b,"]"); |
| print("coeffs:"); |
| for i from 0 to deg do coeff(poly,i); |