blob: c2cd51193ed1f0895d800b3de77be8d208694bbd [file] [log] [blame]
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/decoder/integer_sequence_codec.h"
#include "src/base/math_utils.h"
#include "src/base/utils.h"
#include <algorithm>
#include <iostream>
namespace astc_codec {
namespace {
// Tables of trit and quint encodings generated by the implementation in
// http://cs/aosp-master/external/skia/src/utils/SkTextureCompressor_ASTC.cpp
//
// These tables are used to decode the blocks of values encoded using the ASTC
// integer sequence encoding. The theory is that five trits (values that can
// take any number in the range [0, 2]) can take on a total of 3^5 = 243 total
// values, which can be stored in eight bits. These eight bits are used to
// decode the five trits based on the ASTC specification in Section C.2.12.
// For simplicity, we have stored a look-up table here so that we don't need
// to implement the decoding logic. Similarly, seven bits are used to decode
// three quints (since 5^3 = 125 < 128).
static const std::array<int, 5> kTritEncodings[256] = {
{{ 0, 0, 0, 0, 0 }}, {{ 1, 0, 0, 0, 0 }}, {{ 2, 0, 0, 0, 0 }},
{{ 0, 0, 2, 0, 0 }}, {{ 0, 1, 0, 0, 0 }}, {{ 1, 1, 0, 0, 0 }},
{{ 2, 1, 0, 0, 0 }}, {{ 1, 0, 2, 0, 0 }}, {{ 0, 2, 0, 0, 0 }},
{{ 1, 2, 0, 0, 0 }}, {{ 2, 2, 0, 0, 0 }}, {{ 2, 0, 2, 0, 0 }},
{{ 0, 2, 2, 0, 0 }}, {{ 1, 2, 2, 0, 0 }}, {{ 2, 2, 2, 0, 0 }},
{{ 2, 0, 2, 0, 0 }}, {{ 0, 0, 1, 0, 0 }}, {{ 1, 0, 1, 0, 0 }},
{{ 2, 0, 1, 0, 0 }}, {{ 0, 1, 2, 0, 0 }}, {{ 0, 1, 1, 0, 0 }},
{{ 1, 1, 1, 0, 0 }}, {{ 2, 1, 1, 0, 0 }}, {{ 1, 1, 2, 0, 0 }},
{{ 0, 2, 1, 0, 0 }}, {{ 1, 2, 1, 0, 0 }}, {{ 2, 2, 1, 0, 0 }},
{{ 2, 1, 2, 0, 0 }}, {{ 0, 0, 0, 2, 2 }}, {{ 1, 0, 0, 2, 2 }},
{{ 2, 0, 0, 2, 2 }}, {{ 0, 0, 2, 2, 2 }}, {{ 0, 0, 0, 1, 0 }},
{{ 1, 0, 0, 1, 0 }}, {{ 2, 0, 0, 1, 0 }}, {{ 0, 0, 2, 1, 0 }},
{{ 0, 1, 0, 1, 0 }}, {{ 1, 1, 0, 1, 0 }}, {{ 2, 1, 0, 1, 0 }},
{{ 1, 0, 2, 1, 0 }}, {{ 0, 2, 0, 1, 0 }}, {{ 1, 2, 0, 1, 0 }},
{{ 2, 2, 0, 1, 0 }}, {{ 2, 0, 2, 1, 0 }}, {{ 0, 2, 2, 1, 0 }},
{{ 1, 2, 2, 1, 0 }}, {{ 2, 2, 2, 1, 0 }}, {{ 2, 0, 2, 1, 0 }},
{{ 0, 0, 1, 1, 0 }}, {{ 1, 0, 1, 1, 0 }}, {{ 2, 0, 1, 1, 0 }},
{{ 0, 1, 2, 1, 0 }}, {{ 0, 1, 1, 1, 0 }}, {{ 1, 1, 1, 1, 0 }},
{{ 2, 1, 1, 1, 0 }}, {{ 1, 1, 2, 1, 0 }}, {{ 0, 2, 1, 1, 0 }},
{{ 1, 2, 1, 1, 0 }}, {{ 2, 2, 1, 1, 0 }}, {{ 2, 1, 2, 1, 0 }},
{{ 0, 1, 0, 2, 2 }}, {{ 1, 1, 0, 2, 2 }}, {{ 2, 1, 0, 2, 2 }},
{{ 1, 0, 2, 2, 2 }}, {{ 0, 0, 0, 2, 0 }}, {{ 1, 0, 0, 2, 0 }},
{{ 2, 0, 0, 2, 0 }}, {{ 0, 0, 2, 2, 0 }}, {{ 0, 1, 0, 2, 0 }},
{{ 1, 1, 0, 2, 0 }}, {{ 2, 1, 0, 2, 0 }}, {{ 1, 0, 2, 2, 0 }},
{{ 0, 2, 0, 2, 0 }}, {{ 1, 2, 0, 2, 0 }}, {{ 2, 2, 0, 2, 0 }},
{{ 2, 0, 2, 2, 0 }}, {{ 0, 2, 2, 2, 0 }}, {{ 1, 2, 2, 2, 0 }},
{{ 2, 2, 2, 2, 0 }}, {{ 2, 0, 2, 2, 0 }}, {{ 0, 0, 1, 2, 0 }},
{{ 1, 0, 1, 2, 0 }}, {{ 2, 0, 1, 2, 0 }}, {{ 0, 1, 2, 2, 0 }},
{{ 0, 1, 1, 2, 0 }}, {{ 1, 1, 1, 2, 0 }}, {{ 2, 1, 1, 2, 0 }},
{{ 1, 1, 2, 2, 0 }}, {{ 0, 2, 1, 2, 0 }}, {{ 1, 2, 1, 2, 0 }},
{{ 2, 2, 1, 2, 0 }}, {{ 2, 1, 2, 2, 0 }}, {{ 0, 2, 0, 2, 2 }},
{{ 1, 2, 0, 2, 2 }}, {{ 2, 2, 0, 2, 2 }}, {{ 2, 0, 2, 2, 2 }},
{{ 0, 0, 0, 0, 2 }}, {{ 1, 0, 0, 0, 2 }}, {{ 2, 0, 0, 0, 2 }},
{{ 0, 0, 2, 0, 2 }}, {{ 0, 1, 0, 0, 2 }}, {{ 1, 1, 0, 0, 2 }},
{{ 2, 1, 0, 0, 2 }}, {{ 1, 0, 2, 0, 2 }}, {{ 0, 2, 0, 0, 2 }},
{{ 1, 2, 0, 0, 2 }}, {{ 2, 2, 0, 0, 2 }}, {{ 2, 0, 2, 0, 2 }},
{{ 0, 2, 2, 0, 2 }}, {{ 1, 2, 2, 0, 2 }}, {{ 2, 2, 2, 0, 2 }},
{{ 2, 0, 2, 0, 2 }}, {{ 0, 0, 1, 0, 2 }}, {{ 1, 0, 1, 0, 2 }},
{{ 2, 0, 1, 0, 2 }}, {{ 0, 1, 2, 0, 2 }}, {{ 0, 1, 1, 0, 2 }},
{{ 1, 1, 1, 0, 2 }}, {{ 2, 1, 1, 0, 2 }}, {{ 1, 1, 2, 0, 2 }},
{{ 0, 2, 1, 0, 2 }}, {{ 1, 2, 1, 0, 2 }}, {{ 2, 2, 1, 0, 2 }},
{{ 2, 1, 2, 0, 2 }}, {{ 0, 2, 2, 2, 2 }}, {{ 1, 2, 2, 2, 2 }},
{{ 2, 2, 2, 2, 2 }}, {{ 2, 0, 2, 2, 2 }}, {{ 0, 0, 0, 0, 1 }},
{{ 1, 0, 0, 0, 1 }}, {{ 2, 0, 0, 0, 1 }}, {{ 0, 0, 2, 0, 1 }},
{{ 0, 1, 0, 0, 1 }}, {{ 1, 1, 0, 0, 1 }}, {{ 2, 1, 0, 0, 1 }},
{{ 1, 0, 2, 0, 1 }}, {{ 0, 2, 0, 0, 1 }}, {{ 1, 2, 0, 0, 1 }},
{{ 2, 2, 0, 0, 1 }}, {{ 2, 0, 2, 0, 1 }}, {{ 0, 2, 2, 0, 1 }},
{{ 1, 2, 2, 0, 1 }}, {{ 2, 2, 2, 0, 1 }}, {{ 2, 0, 2, 0, 1 }},
{{ 0, 0, 1, 0, 1 }}, {{ 1, 0, 1, 0, 1 }}, {{ 2, 0, 1, 0, 1 }},
{{ 0, 1, 2, 0, 1 }}, {{ 0, 1, 1, 0, 1 }}, {{ 1, 1, 1, 0, 1 }},
{{ 2, 1, 1, 0, 1 }}, {{ 1, 1, 2, 0, 1 }}, {{ 0, 2, 1, 0, 1 }},
{{ 1, 2, 1, 0, 1 }}, {{ 2, 2, 1, 0, 1 }}, {{ 2, 1, 2, 0, 1 }},
{{ 0, 0, 1, 2, 2 }}, {{ 1, 0, 1, 2, 2 }}, {{ 2, 0, 1, 2, 2 }},
{{ 0, 1, 2, 2, 2 }}, {{ 0, 0, 0, 1, 1 }}, {{ 1, 0, 0, 1, 1 }},
{{ 2, 0, 0, 1, 1 }}, {{ 0, 0, 2, 1, 1 }}, {{ 0, 1, 0, 1, 1 }},
{{ 1, 1, 0, 1, 1 }}, {{ 2, 1, 0, 1, 1 }}, {{ 1, 0, 2, 1, 1 }},
{{ 0, 2, 0, 1, 1 }}, {{ 1, 2, 0, 1, 1 }}, {{ 2, 2, 0, 1, 1 }},
{{ 2, 0, 2, 1, 1 }}, {{ 0, 2, 2, 1, 1 }}, {{ 1, 2, 2, 1, 1 }},
{{ 2, 2, 2, 1, 1 }}, {{ 2, 0, 2, 1, 1 }}, {{ 0, 0, 1, 1, 1 }},
{{ 1, 0, 1, 1, 1 }}, {{ 2, 0, 1, 1, 1 }}, {{ 0, 1, 2, 1, 1 }},
{{ 0, 1, 1, 1, 1 }}, {{ 1, 1, 1, 1, 1 }}, {{ 2, 1, 1, 1, 1 }},
{{ 1, 1, 2, 1, 1 }}, {{ 0, 2, 1, 1, 1 }}, {{ 1, 2, 1, 1, 1 }},
{{ 2, 2, 1, 1, 1 }}, {{ 2, 1, 2, 1, 1 }}, {{ 0, 1, 1, 2, 2 }},
{{ 1, 1, 1, 2, 2 }}, {{ 2, 1, 1, 2, 2 }}, {{ 1, 1, 2, 2, 2 }},
{{ 0, 0, 0, 2, 1 }}, {{ 1, 0, 0, 2, 1 }}, {{ 2, 0, 0, 2, 1 }},
{{ 0, 0, 2, 2, 1 }}, {{ 0, 1, 0, 2, 1 }}, {{ 1, 1, 0, 2, 1 }},
{{ 2, 1, 0, 2, 1 }}, {{ 1, 0, 2, 2, 1 }}, {{ 0, 2, 0, 2, 1 }},
{{ 1, 2, 0, 2, 1 }}, {{ 2, 2, 0, 2, 1 }}, {{ 2, 0, 2, 2, 1 }},
{{ 0, 2, 2, 2, 1 }}, {{ 1, 2, 2, 2, 1 }}, {{ 2, 2, 2, 2, 1 }},
{{ 2, 0, 2, 2, 1 }}, {{ 0, 0, 1, 2, 1 }}, {{ 1, 0, 1, 2, 1 }},
{{ 2, 0, 1, 2, 1 }}, {{ 0, 1, 2, 2, 1 }}, {{ 0, 1, 1, 2, 1 }},
{{ 1, 1, 1, 2, 1 }}, {{ 2, 1, 1, 2, 1 }}, {{ 1, 1, 2, 2, 1 }},
{{ 0, 2, 1, 2, 1 }}, {{ 1, 2, 1, 2, 1 }}, {{ 2, 2, 1, 2, 1 }},
{{ 2, 1, 2, 2, 1 }}, {{ 0, 2, 1, 2, 2 }}, {{ 1, 2, 1, 2, 2 }},
{{ 2, 2, 1, 2, 2 }}, {{ 2, 1, 2, 2, 2 }}, {{ 0, 0, 0, 1, 2 }},
{{ 1, 0, 0, 1, 2 }}, {{ 2, 0, 0, 1, 2 }}, {{ 0, 0, 2, 1, 2 }},
{{ 0, 1, 0, 1, 2 }}, {{ 1, 1, 0, 1, 2 }}, {{ 2, 1, 0, 1, 2 }},
{{ 1, 0, 2, 1, 2 }}, {{ 0, 2, 0, 1, 2 }}, {{ 1, 2, 0, 1, 2 }},
{{ 2, 2, 0, 1, 2 }}, {{ 2, 0, 2, 1, 2 }}, {{ 0, 2, 2, 1, 2 }},
{{ 1, 2, 2, 1, 2 }}, {{ 2, 2, 2, 1, 2 }}, {{ 2, 0, 2, 1, 2 }},
{{ 0, 0, 1, 1, 2 }}, {{ 1, 0, 1, 1, 2 }}, {{ 2, 0, 1, 1, 2 }},
{{ 0, 1, 2, 1, 2 }}, {{ 0, 1, 1, 1, 2 }}, {{ 1, 1, 1, 1, 2 }},
{{ 2, 1, 1, 1, 2 }}, {{ 1, 1, 2, 1, 2 }}, {{ 0, 2, 1, 1, 2 }},
{{ 1, 2, 1, 1, 2 }}, {{ 2, 2, 1, 1, 2 }}, {{ 2, 1, 2, 1, 2 }},
{{ 0, 2, 2, 2, 2 }}, {{ 1, 2, 2, 2, 2 }}, {{ 2, 2, 2, 2, 2 }},
{{ 2, 1, 2, 2, 2 }}
};
static const std::array<int, 3> kQuintEncodings[128] = {
{{ 0, 0, 0 }}, {{ 1, 0, 0 }}, {{ 2, 0, 0 }}, {{ 3, 0, 0 }}, {{ 4, 0, 0 }},
{{ 0, 4, 0 }}, {{ 4, 4, 0 }}, {{ 4, 4, 4 }}, {{ 0, 1, 0 }}, {{ 1, 1, 0 }},
{{ 2, 1, 0 }}, {{ 3, 1, 0 }}, {{ 4, 1, 0 }}, {{ 1, 4, 0 }}, {{ 4, 4, 1 }},
{{ 4, 4, 4 }}, {{ 0, 2, 0 }}, {{ 1, 2, 0 }}, {{ 2, 2, 0 }}, {{ 3, 2, 0 }},
{{ 4, 2, 0 }}, {{ 2, 4, 0 }}, {{ 4, 4, 2 }}, {{ 4, 4, 4 }}, {{ 0, 3, 0 }},
{{ 1, 3, 0 }}, {{ 2, 3, 0 }}, {{ 3, 3, 0 }}, {{ 4, 3, 0 }}, {{ 3, 4, 0 }},
{{ 4, 4, 3 }}, {{ 4, 4, 4 }}, {{ 0, 0, 1 }}, {{ 1, 0, 1 }}, {{ 2, 0, 1 }},
{{ 3, 0, 1 }}, {{ 4, 0, 1 }}, {{ 0, 4, 1 }}, {{ 4, 0, 4 }}, {{ 0, 4, 4 }},
{{ 0, 1, 1 }}, {{ 1, 1, 1 }}, {{ 2, 1, 1 }}, {{ 3, 1, 1 }}, {{ 4, 1, 1 }},
{{ 1, 4, 1 }}, {{ 4, 1, 4 }}, {{ 1, 4, 4 }}, {{ 0, 2, 1 }}, {{ 1, 2, 1 }},
{{ 2, 2, 1 }}, {{ 3, 2, 1 }}, {{ 4, 2, 1 }}, {{ 2, 4, 1 }}, {{ 4, 2, 4 }},
{{ 2, 4, 4 }}, {{ 0, 3, 1 }}, {{ 1, 3, 1 }}, {{ 2, 3, 1 }}, {{ 3, 3, 1 }},
{{ 4, 3, 1 }}, {{ 3, 4, 1 }}, {{ 4, 3, 4 }}, {{ 3, 4, 4 }}, {{ 0, 0, 2 }},
{{ 1, 0, 2 }}, {{ 2, 0, 2 }}, {{ 3, 0, 2 }}, {{ 4, 0, 2 }}, {{ 0, 4, 2 }},
{{ 2, 0, 4 }}, {{ 3, 0, 4 }}, {{ 0, 1, 2 }}, {{ 1, 1, 2 }}, {{ 2, 1, 2 }},
{{ 3, 1, 2 }}, {{ 4, 1, 2 }}, {{ 1, 4, 2 }}, {{ 2, 1, 4 }}, {{ 3, 1, 4 }},
{{ 0, 2, 2 }}, {{ 1, 2, 2 }}, {{ 2, 2, 2 }}, {{ 3, 2, 2 }}, {{ 4, 2, 2 }},
{{ 2, 4, 2 }}, {{ 2, 2, 4 }}, {{ 3, 2, 4 }}, {{ 0, 3, 2 }}, {{ 1, 3, 2 }},
{{ 2, 3, 2 }}, {{ 3, 3, 2 }}, {{ 4, 3, 2 }}, {{ 3, 4, 2 }}, {{ 2, 3, 4 }},
{{ 3, 3, 4 }}, {{ 0, 0, 3 }}, {{ 1, 0, 3 }}, {{ 2, 0, 3 }}, {{ 3, 0, 3 }},
{{ 4, 0, 3 }}, {{ 0, 4, 3 }}, {{ 0, 0, 4 }}, {{ 1, 0, 4 }}, {{ 0, 1, 3 }},
{{ 1, 1, 3 }}, {{ 2, 1, 3 }}, {{ 3, 1, 3 }}, {{ 4, 1, 3 }}, {{ 1, 4, 3 }},
{{ 0, 1, 4 }}, {{ 1, 1, 4 }}, {{ 0, 2, 3 }}, {{ 1, 2, 3 }}, {{ 2, 2, 3 }},
{{ 3, 2, 3 }}, {{ 4, 2, 3 }}, {{ 2, 4, 3 }}, {{ 0, 2, 4 }}, {{ 1, 2, 4 }},
{{ 0, 3, 3 }}, {{ 1, 3, 3 }}, {{ 2, 3, 3 }}, {{ 3, 3, 3 }}, {{ 4, 3, 3 }},
{{ 3, 4, 3 }}, {{ 0, 3, 4 }}, {{ 1, 3, 4 }}
};
// A cached table containing the max ranges for values encoded using ASTC's
// Bounded Integer Sequence Encoding. These are the numbers between 1 and 255
// that can be represented exactly as a number in the ranges
// [0, 2^k), [0, 3 * 2^k), and [0, 5 * 2^k).
static const std::array<int, kNumPossibleRanges> kMaxRanges = []() {
std::array<int, kNumPossibleRanges> ranges;
// Initialize the table that we need for determining value encodings.
auto next_max_range = ranges.begin();
auto add_val = [&next_max_range](int val) {
if (val <= 0 || (1 << kLog2MaxRangeForBits) <= val) {
return;
}
*(next_max_range++) = val;
};
for (int i = 0; i <= kLog2MaxRangeForBits; ++i) {
add_val(3 * (1 << i) - 1);
add_val(5 * (1 << i) - 1);
add_val((1 << i) - 1);
}
assert(std::distance(next_max_range, ranges.end()) == 0);
std::sort(ranges.begin(), ranges.end());
return ranges;
}();
// Returns true if x == 0 or if x is a power of two. This function is only used
// in the GetCountsForRange function, where we need to have it return true
// on zero since we can have single trit/quint ISE encodings according to
// Table C.2.7.
template<typename T,
typename std::enable_if<std::is_integral<T>::value, T>::type = 0>
inline constexpr bool IsPow2(T x) { return (x & (x - 1)) == 0; }
// For the ISE block encoding, these arrays determine how many bits are
// used after each value to store the interleaved quint/trit block.
const int kInterleavedQuintBits[3] = { 3, 2, 2 };
const int kInterleavedTritBits[5] = { 2, 2, 1, 2, 1 };
// Some template meta programming to get around the fact that MSVC
// will not allow (ValRange == 5) ? 3 : 5 as a template parameter
template<int ValRange>
struct DecodeBlockSize {
enum { value = (ValRange == 5 ? 3 : 5) };
};
// Decodes either a trit or quint block using the BISE (Bounded Integer Sequence
// Encoding) defined in Section C.2.12 of the ASTC specification. ValRange is
// expected to be either 3 or 5 depending on whether or not we're encoding trits
// or quints respectively. In other words, it is the remaining factor in whether
// the passed blocks contain encoded values of the form 3*2^k or 5*2^k.
template<int ValRange>
std::array<int, /* kNumVals = */ DecodeBlockSize<ValRange>::value> DecodeISEBlock(
uint64_t block_bits, int num_bits) {
static_assert(ValRange == 3 || ValRange == 5,
"We only know about trits and quints");
// We either have three quints or five trits
constexpr const int kNumVals = (ValRange == 5) ? 3 : 5;
// Depending on whether or not we're using quints or trits will determine
// the positions of the interleaved bits in the encoded block.
constexpr const int* const kInterleavedBits =
(ValRange == 5) ? kInterleavedQuintBits : kInterleavedTritBits;
// Set up the bits for reading
base::BitStream<base::UInt128> block_bit_src(block_bits, sizeof(block_bits) * 8);
// Decode the block
std::array<int, kNumVals> m;
uint64_t encoded = 0;
uint32_t encoded_bits_read = 0;
for (int i = 0; i < kNumVals; ++i) {
{
uint64_t bits = 0;
const bool result = block_bit_src.GetBits(num_bits, &bits);
assert(result);
m[i] = static_cast<int>(bits);
}
uint64_t encoded_bits;
{
const bool result = block_bit_src.GetBits(kInterleavedBits[i], &encoded_bits);
assert(result);
}
encoded |= encoded_bits << encoded_bits_read;
encoded_bits_read += kInterleavedBits[i];
}
// Make sure that our encoded trit/quint doesn't exceed its bounds
assert(ValRange != 3 || encoded < 256);
assert(ValRange != 5 || encoded < 128);
const int* const kEncodings = (ValRange == 5) ?
kQuintEncodings[encoded].data() : kTritEncodings[encoded].data();
std::array<int, kNumVals> result;
for (int i = 0; i < kNumVals; ++i) {
assert(m[i] < 1 << num_bits);
result[i] = kEncodings[i] << num_bits | m[i];
}
return result;
}
// Encode a single trit or quint block using the BISE (Bounded Integer Sequence
// Encoding) defined in Section C.2.12 of the ASTC specification. ValRange is
// expected to be either 3 or 5 depending on whether or not we're encoding trits
// or quints respectively. In other words, it is the remaining factor in whether
// the passed blocks contain encoded values of the form 3*2^k or 5*2^k.
template <int ValRange>
void EncodeISEBlock(const std::vector<int>& vals, int bits_per_val,
base::BitStream<base::UInt128>* bit_sink) {
static_assert(ValRange == 3 || ValRange == 5,
"We only know about trits and quints");
// We either have three quints or five trits
constexpr const int kNumVals = (ValRange == 5) ? 3 : 5;
// Three quints in seven bits or five trits in eight bits
constexpr const int kNumEncodedBitsPerBlock = (ValRange == 5) ? 7 : 8;
// Depending on whether or not we're using quints or trits will determine
// the positions of the interleaved bits in the encoding
constexpr const int* const kInterleavedBits =
(ValRange == 5) ? kInterleavedQuintBits : kInterleavedTritBits;
// ISE blocks can only have up to a specific number of values...
assert(vals.size() <= kNumVals);
// Split up into bits and non bits. Non bits are used to find the quint/trit
// encoding that we need.
std::array<int, kNumVals> non_bits = {{ 0 }};
std::array<int, kNumVals> bits = {{ 0 }};
for (size_t i = 0; i < vals.size(); ++i) {
bits[i] = vals[i] & ((1 << bits_per_val) - 1);
non_bits[i] = vals[i] >> bits_per_val;
assert(non_bits[i] < ValRange);
}
// We only need to add as many bits as necessary, so let's limit it based
// on the computation described in Section C.2.22 of the ASTC specification
const int total_num_bits =
((vals.size() * kNumEncodedBitsPerBlock + kNumVals - 1) / kNumVals)
+ vals.size() * bits_per_val;
int bits_added = 0;
// The number of bits used for the quint/trit encoding is necessary to know
// in order to properly select the encoding we need to represent.
int num_encoded_bits = 0;
for (int i = 0; i < kNumVals; ++i) {
bits_added += bits_per_val;
if (bits_added >= total_num_bits) {
break;
}
num_encoded_bits += kInterleavedBits[i];
bits_added += kInterleavedBits[i];
if (bits_added >= total_num_bits) {
break;
}
}
bits_added = 0;
assert(num_encoded_bits <= kNumEncodedBitsPerBlock);
// TODO(google): The faster way to do this would be to construct trees out
// of the quint/trit encoding patterns, or just invert the decoding logic.
// Here we go from the end backwards because it makes our tests are more
// deterministic.
int non_bit_encoding = -1;
for (int j = (1 << num_encoded_bits) - 1; j >= 0; --j) {
bool matches = true;
// We don't need to match all trits here, just the ones that correspond
// to the values that we passed in
for (size_t i = 0; i < kNumVals; ++i) {
if ((ValRange == 5 && kQuintEncodings[j][i] != non_bits[i]) ||
(ValRange == 3 && kTritEncodings[j][i] != non_bits[i])) {
matches = false;
break;
}
}
if (matches) {
non_bit_encoding = j;
break;
}
}
assert(non_bit_encoding >= 0);
// Now pack the bits into the block
for (int i = 0; i < vals.size(); ++i) {
// First add the base bits for this value
if (bits_added + bits_per_val <= total_num_bits) {
bit_sink->PutBits(bits[i], bits_per_val);
bits_added += bits_per_val;
}
// Now add the interleaved bits from the quint/trit
int num_int_bits = kInterleavedBits[i];
int int_bits = non_bit_encoding & ((1 << num_int_bits) - 1);
if (bits_added + num_int_bits <= total_num_bits) {
bit_sink->PutBits(int_bits, num_int_bits);
bits_added += num_int_bits;
non_bit_encoding >>= num_int_bits;
}
}
}
inline void CHECK_COUNTS(int trits, int quints) {
assert(trits == 0 || quints == 0); // Either trits or quints
assert(trits == 0 || trits == 1); // At most one trit
assert(quints == 0 || quints == 1); // At most one quint
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
std::array<int, kNumPossibleRanges>::const_iterator ISERangeBegin() {
return kMaxRanges.cbegin();
}
std::array<int, kNumPossibleRanges>::const_iterator ISERangeEnd() {
return kMaxRanges.cend();
}
void IntegerSequenceCodec::GetCountsForRange(
int range, int* const trits, int* const quints, int* const bits) {
// Make sure the passed pointers are valid
assert(trits != nullptr);
assert(quints != nullptr);
assert(bits != nullptr);
// These are generally errors -- there should never be any ASTC values
// outside of this range
UTILS_RELEASE_ASSERT(range > 0);
UTILS_RELEASE_ASSERT(range < 1 << kLog2MaxRangeForBits);
*bits = 0;
*trits = 0;
*quints = 0;
// Search through the numbers of the form 2^n, 3 * 2^n and 5 * 2^n
const int max_vals_for_range =
*std::lower_bound(kMaxRanges.begin(), kMaxRanges.end(), range) + 1;
// Make sure we found something
assert(max_vals_for_range > 1);
// Find out what kind of range it is
if ((max_vals_for_range % 3 == 0) && IsPow2(max_vals_for_range / 3)) {
*bits = base::Log2Floor(max_vals_for_range / 3);
*trits = 1;
*quints = 0;
} else if ((max_vals_for_range % 5 == 0) && IsPow2(max_vals_for_range / 5)) {
*bits = base::Log2Floor(max_vals_for_range / 5);
*trits = 0;
*quints = 1;
} else if (IsPow2(max_vals_for_range)) {
*bits = base::Log2Floor(max_vals_for_range);
*trits = 0;
*quints = 0;
}
// If we set any of these values then we're done.
if ((*bits | *trits | *quints) != 0) {
CHECK_COUNTS(*trits, *quints);
}
}
// Returns the overall bit count for a range of val_count values encoded
// using the specified number of trits, quints and straight bits (respectively)
int IntegerSequenceCodec::GetBitCount(int num_vals,
int trits, int quints, int bits) {
CHECK_COUNTS(trits, quints);
// See section C.2.22 for the formula used here.
const int trit_bit_count = ((num_vals * 8 * trits) + 4) / 5;
const int quint_bit_count = ((num_vals * 7 * quints) + 2) / 3;
const int base_bit_count = num_vals * bits;
return trit_bit_count + quint_bit_count + base_bit_count;
}
IntegerSequenceCodec::IntegerSequenceCodec(int range) {
int trits, quints, bits;
GetCountsForRange(range, &trits, &quints, &bits);
InitializeWithCounts(trits, quints, bits);
}
IntegerSequenceCodec::IntegerSequenceCodec(
int trits, int quints, int bits) {
InitializeWithCounts(trits, quints, bits);
}
void IntegerSequenceCodec::InitializeWithCounts(
int trits, int quints, int bits) {
CHECK_COUNTS(trits, quints);
if (trits > 0) {
encoding_ = EncodingMode::kTritEncoding;
} else if (quints > 0) {
encoding_ = EncodingMode::kQuintEncoding;
} else {
encoding_ = EncodingMode::kBitEncoding;
}
bits_ = bits;
}
int IntegerSequenceCodec::NumValsPerBlock() const {
const std::array<int, 3> kNumValsByEncoding = {{ 5, 3, 1 }};
return kNumValsByEncoding[static_cast<int>(encoding_)];
}
int IntegerSequenceCodec::EncodedBlockSize() const {
const std::array<int, 3> kExtraBlockSizeByEncoding = {{ 8, 7, 0 }};
const int num_vals = NumValsPerBlock();
return kExtraBlockSizeByEncoding[static_cast<int>(encoding_)]
+ num_vals * bits_;
}
std::vector<int> IntegerSequenceDecoder::Decode(
int num_vals, base::BitStream<base::UInt128> *bit_src) const {
int trits = (encoding_ == kTritEncoding)? 1 : 0;
int quints = (encoding_ == kQuintEncoding)? 1 : 0;
const int total_num_bits = GetBitCount(num_vals, trits, quints, bits_);
const int bits_per_block = EncodedBlockSize();
assert(bits_per_block < 64);
int bits_left = total_num_bits;
std::vector<int> result;
while (bits_left > 0) {
uint64_t block_bits;
{
const bool result = bit_src->GetBits(std::min(bits_left, bits_per_block), &block_bits);
assert(result);
}
switch (encoding_) {
case kTritEncoding: {
auto trit_vals = DecodeISEBlock<3>(block_bits, bits_);
result.insert(result.end(), trit_vals.begin(), trit_vals.end());
}
break;
case kQuintEncoding: {
auto quint_vals = DecodeISEBlock<5>(block_bits, bits_);
result.insert(result.end(), quint_vals.begin(), quint_vals.end());
}
break;
case kBitEncoding:
result.push_back(static_cast<int>(block_bits));
break;
}
bits_left -= bits_per_block;
}
// Resize result to only contain as many values as requested
assert(result.size() >= static_cast<size_t>(num_vals));
result.resize(num_vals);
// Encoded all the values
return result;
}
void IntegerSequenceEncoder::Encode(base::BitStream<base::UInt128>* bit_sink) const {
// Go through all of the values and chop them up into blocks. The properties
// of the trit and quint encodings mean that if we need to encode fewer values
// in a block than the number of values encoded in the block then we need to
// consider the last few values to be zero.
auto next_val = vals_.begin();
while (next_val != vals_.end()) {
switch (encoding_) {
case kTritEncoding: {
std::vector<int> trit_vals;
for (int i = 0; i < 5; ++i) {
if (next_val != vals_.end()) {
trit_vals.push_back(*next_val);
++next_val;
}
}
EncodeISEBlock<3>(trit_vals, bits_, bit_sink);
}
break;
case kQuintEncoding: {
std::vector<int> quint_vals;
for (int i = 0; i < 3; ++i) {
if (next_val != vals_.end()) {
quint_vals.push_back(*next_val);
++next_val;
}
}
EncodeISEBlock<5>(quint_vals, bits_, bit_sink);
}
break;
case kBitEncoding: {
bit_sink->PutBits(*next_val, EncodedBlockSize());
++next_val;
}
break;
}
}
}
} // namespace astc_codec