| /* Output the generated parsing program for Bison. |
| |
| Copyright (C) 1984, 1986, 1989, 1992, 2000-2006, 2009-2012 Free |
| Software Foundation, Inc. |
| |
| This file is part of Bison, the GNU Compiler Compiler. |
| |
| This program is free software: you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation, either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include <config.h> |
| #include "system.h" |
| |
| #include <bitsetv.h> |
| |
| #include "complain.h" |
| #include "conflicts.h" |
| #include "files.h" |
| #include "getargs.h" |
| #include "gram.h" |
| #include "lalr.h" |
| #include "muscle-tab.h" |
| #include "reader.h" |
| #include "symtab.h" |
| #include "tables.h" |
| |
| /* Several tables are indexed both by state and nonterminal numbers. |
| We call such an index a `vector'; i.e., a vector is either a state |
| or a nonterminal number. |
| |
| Of course vector_number_t ought to be wide enough to contain |
| state_number and symbol_number. */ |
| typedef int vector_number; |
| |
| #if 0 /* Not currently used. */ |
| static inline vector_number |
| state_number_to_vector_number (state_number s) |
| { |
| return s; |
| } |
| #endif |
| |
| static inline vector_number |
| symbol_number_to_vector_number (symbol_number sym) |
| { |
| return state_number_as_int (nstates) + sym - ntokens; |
| } |
| |
| int nvectors; |
| |
| |
| /* FROMS and TOS are indexed by vector_number. |
| |
| If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an |
| array of state numbers of the non defaulted GOTO on VECTOR. |
| |
| If VECTOR is a state, TOS[VECTOR] is the array of actions to do on |
| the (array of) symbols FROMS[VECTOR]. |
| |
| In both cases, TALLY[VECTOR] is the size of the arrays |
| FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] = |
| (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE = |
| TALLY[VECTOR]. |
| |
| FROMS therefore contains symbol_number and action_number, |
| TOS state_number and action_number, |
| TALLY sizes, |
| WIDTH differences of FROMS. |
| |
| Let base_number be the type of FROMS, TOS, and WIDTH. */ |
| #define BASE_MAXIMUM INT_MAX |
| #define BASE_MINIMUM INT_MIN |
| |
| static base_number **froms; |
| static base_number **tos; |
| static unsigned int **conflict_tos; |
| static int *tally; |
| static base_number *width; |
| |
| |
| /* For a given state, N = ACTROW[SYMBOL]: |
| |
| If N = 0, stands for `run the default action'. |
| If N = MIN, stands for `raise a syntax error'. |
| If N > 0, stands for `shift SYMBOL and go to n'. |
| If N < 0, stands for `reduce -N'. */ |
| typedef int action_number; |
| #define ACTION_NUMBER_MINIMUM INT_MIN |
| |
| static action_number *actrow; |
| |
| /* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the |
| new vector number of VECTOR. We skip `empty' vectors (i.e., |
| TALLY[VECTOR] = 0), and call these `entries'. */ |
| static vector_number *order; |
| static int nentries; |
| |
| base_number *base = NULL; |
| /* A distinguished value of BASE, negative infinite. During the |
| computation equals to BASE_MINIMUM, later mapped to BASE_NINF to |
| keep parser tables small. */ |
| base_number base_ninf = 0; |
| static base_number *pos = NULL; |
| |
| static unsigned int *conflrow; |
| unsigned int *conflict_table; |
| unsigned int *conflict_list; |
| int conflict_list_cnt; |
| static int conflict_list_free; |
| |
| /* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start |
| with more or less the original hard-coded value (which was |
| SHRT_MAX). */ |
| static int table_size = 32768; |
| base_number *table; |
| base_number *check; |
| /* The value used in TABLE to denote explicit syntax errors |
| (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MINIMUM, |
| but in order to keep small tables, renumbered as TABLE_ERROR, which |
| is the smallest (non error) value minus 1. */ |
| base_number table_ninf = 0; |
| static int lowzero; |
| int high; |
| |
| state_number *yydefgoto; |
| rule_number *yydefact; |
| |
| /*----------------------------------------------------------------. |
| | If TABLE (and CHECK) appear to be small to be addressed at | |
| | DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so | |
| | the desired size is at least DESIRED + 1. | |
| `----------------------------------------------------------------*/ |
| |
| static void |
| table_grow (int desired) |
| { |
| int old_size = table_size; |
| |
| while (table_size <= desired) |
| table_size *= 2; |
| |
| if (trace_flag & trace_resource) |
| fprintf (stderr, "growing table and check from: %d to %d\n", |
| old_size, table_size); |
| |
| table = xnrealloc (table, table_size, sizeof *table); |
| conflict_table = xnrealloc (conflict_table, table_size, |
| sizeof *conflict_table); |
| check = xnrealloc (check, table_size, sizeof *check); |
| |
| for (/* Nothing. */; old_size < table_size; ++old_size) |
| { |
| table[old_size] = 0; |
| conflict_table[old_size] = 0; |
| check[old_size] = -1; |
| } |
| } |
| |
| |
| |
| |
| /*-------------------------------------------------------------------. |
| | For GLR parsers, for each conflicted token in S, as indicated | |
| | by non-zero entries in CONFLROW, create a list of possible | |
| | reductions that are alternatives to the shift or reduction | |
| | currently recorded for that token in S. Store the alternative | |
| | reductions followed by a 0 in CONFLICT_LIST, updating | |
| | CONFLICT_LIST_CNT, and storing an index to the start of the list | |
| | back into CONFLROW. | |
| `-------------------------------------------------------------------*/ |
| |
| static void |
| conflict_row (state *s) |
| { |
| int i, j; |
| reductions *reds = s->reductions; |
| |
| if (!nondeterministic_parser) |
| return; |
| |
| for (j = 0; j < ntokens; j += 1) |
| if (conflrow[j]) |
| { |
| conflrow[j] = conflict_list_cnt; |
| |
| /* Find all reductions for token J, and record all that do not |
| match ACTROW[J]. */ |
| for (i = 0; i < reds->num; i += 1) |
| if (bitset_test (reds->lookahead_tokens[i], j) |
| && (actrow[j] |
| != rule_number_as_item_number (reds->rules[i]->number))) |
| { |
| aver (0 < conflict_list_free); |
| conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1; |
| conflict_list_cnt += 1; |
| conflict_list_free -= 1; |
| } |
| |
| /* Leave a 0 at the end. */ |
| aver (0 < conflict_list_free); |
| conflict_list[conflict_list_cnt] = 0; |
| conflict_list_cnt += 1; |
| conflict_list_free -= 1; |
| } |
| } |
| |
| |
| /*------------------------------------------------------------------. |
| | Decide what to do for each type of token if seen as the | |
| | lookahead in specified state. The value returned is used as the | |
| | default action (yydefact) for the state. In addition, ACTROW is | |
| | filled with what to do for each kind of token, index by symbol | |
| | number, with zero meaning do the default action. The value | |
| | ACTION_NUMBER_MINIMUM, a very negative number, means this | |
| | situation is an error. The parser recognizes this value | |
| | specially. | |
| | | |
| | This is where conflicts are resolved. The loop over lookahead | |
| | rules considered lower-numbered rules last, and the last rule | |
| | considered that likes a token gets to handle it. | |
| | | |
| | For GLR parsers, also sets CONFLROW[SYM] to an index into | |
| | CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) | |
| | with symbol SYM. The default reduction is not used for a symbol | |
| | that has any such conflicts. | |
| `------------------------------------------------------------------*/ |
| |
| static rule * |
| action_row (state *s) |
| { |
| int i; |
| rule *default_reduction = NULL; |
| reductions *reds = s->reductions; |
| transitions *trans = s->transitions; |
| errs *errp = s->errs; |
| /* Set to nonzero to inhibit having any default reduction. */ |
| bool nodefault = false; |
| bool conflicted = false; |
| |
| for (i = 0; i < ntokens; i++) |
| actrow[i] = conflrow[i] = 0; |
| |
| if (reds->lookahead_tokens) |
| { |
| int j; |
| bitset_iterator biter; |
| /* loop over all the rules available here which require |
| lookahead (in reverse order to give precedence to the first |
| rule) */ |
| for (i = reds->num - 1; i >= 0; --i) |
| /* and find each token which the rule finds acceptable |
| to come next */ |
| BITSET_FOR_EACH (biter, reds->lookahead_tokens[i], j, 0) |
| { |
| /* and record this rule as the rule to use if that |
| token follows. */ |
| if (actrow[j] != 0) |
| { |
| conflicted = true; |
| conflrow[j] = 1; |
| } |
| actrow[j] = rule_number_as_item_number (reds->rules[i]->number); |
| } |
| } |
| |
| /* Now see which tokens are allowed for shifts in this state. For |
| them, record the shift as the thing to do. So shift is preferred |
| to reduce. */ |
| FOR_EACH_SHIFT (trans, i) |
| { |
| symbol_number sym = TRANSITION_SYMBOL (trans, i); |
| state *shift_state = trans->states[i]; |
| |
| if (actrow[sym] != 0) |
| { |
| conflicted = true; |
| conflrow[sym] = 1; |
| } |
| actrow[sym] = state_number_as_int (shift_state->number); |
| |
| /* Do not use any default reduction if there is a shift for |
| error */ |
| if (sym == errtoken->number) |
| nodefault = true; |
| } |
| |
| /* See which tokens are an explicit error in this state (due to |
| %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the |
| action. */ |
| for (i = 0; i < errp->num; i++) |
| { |
| symbol *sym = errp->symbols[i]; |
| actrow[sym->number] = ACTION_NUMBER_MINIMUM; |
| } |
| |
| /* Turn off default reductions where requested by the user. See |
| state_lookahead_tokens_count in lalr.c to understand when states are |
| labeled as consistent. */ |
| { |
| char *default_reductions = |
| muscle_percent_define_get ("lr.default-reductions"); |
| if (0 != strcmp (default_reductions, "most") && !s->consistent) |
| nodefault = true; |
| free (default_reductions); |
| } |
| |
| /* Now find the most common reduction and make it the default action |
| for this state. */ |
| |
| if (reds->num >= 1 && !nodefault) |
| { |
| if (s->consistent) |
| default_reduction = reds->rules[0]; |
| else |
| { |
| int max = 0; |
| for (i = 0; i < reds->num; i++) |
| { |
| int count = 0; |
| rule *r = reds->rules[i]; |
| symbol_number j; |
| |
| for (j = 0; j < ntokens; j++) |
| if (actrow[j] == rule_number_as_item_number (r->number)) |
| count++; |
| |
| if (count > max) |
| { |
| max = count; |
| default_reduction = r; |
| } |
| } |
| |
| /* GLR parsers need space for conflict lists, so we can't |
| default conflicted entries. For non-conflicted entries |
| or as long as we are not building a GLR parser, |
| actions that match the default are replaced with zero, |
| which means "use the default". */ |
| |
| if (max > 0) |
| { |
| int j; |
| for (j = 0; j < ntokens; j++) |
| if (actrow[j] |
| == rule_number_as_item_number (default_reduction->number) |
| && ! (nondeterministic_parser && conflrow[j])) |
| actrow[j] = 0; |
| } |
| } |
| } |
| |
| /* If have no default reduction, the default is an error. |
| So replace any action which says "error" with "use default". */ |
| |
| if (!default_reduction) |
| for (i = 0; i < ntokens; i++) |
| if (actrow[i] == ACTION_NUMBER_MINIMUM) |
| actrow[i] = 0; |
| |
| if (conflicted) |
| conflict_row (s); |
| |
| return default_reduction; |
| } |
| |
| |
| /*----------------------------------------. |
| | Set FROMS, TOS, TALLY and WIDTH for S. | |
| `----------------------------------------*/ |
| |
| static void |
| save_row (state_number s) |
| { |
| symbol_number i; |
| int count; |
| base_number *sp; |
| base_number *sp1; |
| base_number *sp2; |
| unsigned int *sp3; |
| |
| /* Number of non default actions in S. */ |
| count = 0; |
| for (i = 0; i < ntokens; i++) |
| if (actrow[i] != 0) |
| count++; |
| |
| if (count == 0) |
| return; |
| |
| /* Allocate non defaulted actions. */ |
| froms[s] = sp = sp1 = xnmalloc (count, sizeof *sp1); |
| tos[s] = sp2 = xnmalloc (count, sizeof *sp2); |
| conflict_tos[s] = sp3 = |
| nondeterministic_parser ? xnmalloc (count, sizeof *sp3) : NULL; |
| |
| /* Store non defaulted actions. */ |
| for (i = 0; i < ntokens; i++) |
| if (actrow[i] != 0) |
| { |
| *sp1++ = i; |
| *sp2++ = actrow[i]; |
| if (nondeterministic_parser) |
| *sp3++ = conflrow[i]; |
| } |
| |
| tally[s] = count; |
| width[s] = sp1[-1] - sp[0] + 1; |
| } |
| |
| |
| /*------------------------------------------------------------------. |
| | Figure out the actions for the specified state, indexed by | |
| | lookahead token type. | |
| | | |
| | The YYDEFACT table is output now. The detailed info is saved for | |
| | putting into YYTABLE later. | |
| `------------------------------------------------------------------*/ |
| |
| static void |
| token_actions (void) |
| { |
| state_number i; |
| symbol_number j; |
| rule_number r; |
| |
| int nconflict = nondeterministic_parser ? conflicts_total_count () : 0; |
| |
| yydefact = xnmalloc (nstates, sizeof *yydefact); |
| |
| actrow = xnmalloc (ntokens, sizeof *actrow); |
| conflrow = xnmalloc (ntokens, sizeof *conflrow); |
| |
| conflict_list = xnmalloc (1 + 2 * nconflict, sizeof *conflict_list); |
| conflict_list_free = 2 * nconflict; |
| conflict_list_cnt = 1; |
| |
| /* Find the rules which are reduced. */ |
| if (!nondeterministic_parser) |
| for (r = 0; r < nrules; ++r) |
| rules[r].useful = false; |
| |
| for (i = 0; i < nstates; ++i) |
| { |
| rule *default_reduction = action_row (states[i]); |
| yydefact[i] = default_reduction ? default_reduction->number + 1 : 0; |
| save_row (i); |
| |
| /* Now that the parser was computed, we can find which rules are |
| really reduced, and which are not because of SR or RR |
| conflicts. */ |
| if (!nondeterministic_parser) |
| { |
| for (j = 0; j < ntokens; ++j) |
| if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM) |
| rules[item_number_as_rule_number (actrow[j])].useful = true; |
| if (yydefact[i]) |
| rules[yydefact[i] - 1].useful = true; |
| } |
| } |
| |
| free (actrow); |
| free (conflrow); |
| } |
| |
| |
| /*------------------------------------------------------------------. |
| | Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], | |
| | i.e., the information related to non defaulted GOTO on the nterm | |
| | SYM. | |
| | | |
| | DEFAULT_STATE is the principal destination on SYM, i.e., the | |
| | default GOTO destination on SYM. | |
| `------------------------------------------------------------------*/ |
| |
| static void |
| save_column (symbol_number sym, state_number default_state) |
| { |
| goto_number i; |
| base_number *sp; |
| base_number *sp1; |
| base_number *sp2; |
| int count; |
| vector_number symno = symbol_number_to_vector_number (sym); |
| |
| goto_number begin = goto_map[sym - ntokens]; |
| goto_number end = goto_map[sym - ntokens + 1]; |
| |
| /* Number of non default GOTO. */ |
| count = 0; |
| for (i = begin; i < end; i++) |
| if (to_state[i] != default_state) |
| count++; |
| |
| if (count == 0) |
| return; |
| |
| /* Allocate room for non defaulted gotos. */ |
| froms[symno] = sp = sp1 = xnmalloc (count, sizeof *sp1); |
| tos[symno] = sp2 = xnmalloc (count, sizeof *sp2); |
| |
| /* Store the state numbers of the non defaulted gotos. */ |
| for (i = begin; i < end; i++) |
| if (to_state[i] != default_state) |
| { |
| *sp1++ = from_state[i]; |
| *sp2++ = to_state[i]; |
| } |
| |
| tally[symno] = count; |
| width[symno] = sp1[-1] - sp[0] + 1; |
| } |
| |
| |
| /*-------------------------------------------------------------. |
| | Return `the' most common destination GOTO on SYM (a nterm). | |
| `-------------------------------------------------------------*/ |
| |
| static state_number |
| default_goto (symbol_number sym, size_t state_count[]) |
| { |
| state_number s; |
| goto_number i; |
| goto_number m = goto_map[sym - ntokens]; |
| goto_number n = goto_map[sym - ntokens + 1]; |
| state_number default_state = -1; |
| size_t max = 0; |
| |
| if (m == n) |
| return -1; |
| |
| for (s = 0; s < nstates; s++) |
| state_count[s] = 0; |
| |
| for (i = m; i < n; i++) |
| state_count[to_state[i]]++; |
| |
| for (s = 0; s < nstates; s++) |
| if (state_count[s] > max) |
| { |
| max = state_count[s]; |
| default_state = s; |
| } |
| |
| return default_state; |
| } |
| |
| |
| /*-------------------------------------------------------------------. |
| | Figure out what to do after reducing with each rule, depending on | |
| | the saved state from before the beginning of parsing the data that | |
| | matched this rule. | |
| | | |
| | The YYDEFGOTO table is output now. The detailed info is saved for | |
| | putting into YYTABLE later. | |
| `-------------------------------------------------------------------*/ |
| |
| static void |
| goto_actions (void) |
| { |
| symbol_number i; |
| size_t *state_count = xnmalloc (nstates, sizeof *state_count); |
| yydefgoto = xnmalloc (nvars, sizeof *yydefgoto); |
| |
| /* For a given nterm I, STATE_COUNT[S] is the number of times there |
| is a GOTO to S on I. */ |
| for (i = ntokens; i < nsyms; ++i) |
| { |
| state_number default_state = default_goto (i, state_count); |
| save_column (i, default_state); |
| yydefgoto[i - ntokens] = default_state; |
| } |
| free (state_count); |
| } |
| |
| |
| /*------------------------------------------------------------------. |
| | Compute ORDER, a reordering of vectors, in order to decide how to | |
| | pack the actions and gotos information into yytable. | |
| `------------------------------------------------------------------*/ |
| |
| static void |
| sort_actions (void) |
| { |
| int i; |
| |
| nentries = 0; |
| |
| for (i = 0; i < nvectors; i++) |
| if (tally[i] > 0) |
| { |
| int k; |
| int t = tally[i]; |
| int w = width[i]; |
| int j = nentries - 1; |
| |
| while (j >= 0 && (width[order[j]] < w)) |
| j--; |
| |
| while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t)) |
| j--; |
| |
| for (k = nentries - 1; k > j; k--) |
| order[k + 1] = order[k]; |
| |
| order[j + 1] = i; |
| nentries++; |
| } |
| } |
| |
| |
| /* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY |
| and WIDTH of VECTOR) are common to a previous state, return this |
| state number. |
| |
| In any other case, return -1. */ |
| |
| static state_number |
| matching_state (vector_number vector) |
| { |
| vector_number i = order[vector]; |
| int t; |
| int w; |
| int prev; |
| |
| /* If VECTOR is a nterm, return -1. */ |
| if (nstates <= i) |
| return -1; |
| |
| t = tally[i]; |
| w = width[i]; |
| |
| /* If VECTOR has GLR conflicts, return -1 */ |
| if (conflict_tos[i] != NULL) |
| { |
| int j; |
| for (j = 0; j < t; j += 1) |
| if (conflict_tos[i][j] != 0) |
| return -1; |
| } |
| |
| for (prev = vector - 1; prev >= 0; prev--) |
| { |
| vector_number j = order[prev]; |
| int k; |
| int match = 1; |
| |
| /* Given how ORDER was computed, if the WIDTH or TALLY is |
| different, there cannot be a matching state. */ |
| if (width[j] != w || tally[j] != t) |
| return -1; |
| |
| for (k = 0; match && k < t; k++) |
| if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k] |
| || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0)) |
| match = 0; |
| |
| if (match) |
| return j; |
| } |
| |
| return -1; |
| } |
| |
| |
| static base_number |
| pack_vector (vector_number vector) |
| { |
| vector_number i = order[vector]; |
| int j; |
| int t = tally[i]; |
| int loc = 0; |
| base_number *from = froms[i]; |
| base_number *to = tos[i]; |
| unsigned int *conflict_to = conflict_tos[i]; |
| |
| aver (t != 0); |
| |
| for (j = lowzero - from[0]; ; j++) |
| { |
| int k; |
| bool ok = true; |
| |
| aver (j < table_size); |
| |
| for (k = 0; ok && k < t; k++) |
| { |
| loc = j + state_number_as_int (from[k]); |
| if (table_size <= loc) |
| table_grow (loc); |
| |
| if (table[loc] != 0) |
| ok = false; |
| } |
| |
| for (k = 0; ok && k < vector; k++) |
| if (pos[k] == j) |
| ok = false; |
| |
| if (ok) |
| { |
| for (k = 0; k < t; k++) |
| { |
| loc = j + from[k]; |
| table[loc] = to[k]; |
| if (nondeterministic_parser && conflict_to != NULL) |
| conflict_table[loc] = conflict_to[k]; |
| check[loc] = from[k]; |
| } |
| |
| while (table[lowzero] != 0) |
| lowzero++; |
| |
| if (loc > high) |
| high = loc; |
| |
| aver (BASE_MINIMUM <= j && j <= BASE_MAXIMUM); |
| return j; |
| } |
| } |
| } |
| |
| |
| /*-------------------------------------------------------------. |
| | Remap the negative infinite in TAB from NINF to the greatest | |
| | possible smallest value. Return it. | |
| | | |
| | In most case this allows us to use shorts instead of ints in | |
| | parsers. | |
| `-------------------------------------------------------------*/ |
| |
| static base_number |
| table_ninf_remap (base_number tab[], int size, base_number ninf) |
| { |
| base_number res = 0; |
| int i; |
| |
| for (i = 0; i < size; i++) |
| if (tab[i] < res && tab[i] != ninf) |
| res = tab[i]; |
| |
| --res; |
| |
| for (i = 0; i < size; i++) |
| if (tab[i] == ninf) |
| tab[i] = res; |
| |
| return res; |
| } |
| |
| static void |
| pack_table (void) |
| { |
| int i; |
| |
| base = xnmalloc (nvectors, sizeof *base); |
| pos = xnmalloc (nentries, sizeof *pos); |
| table = xcalloc (table_size, sizeof *table); |
| conflict_table = xcalloc (table_size, sizeof *conflict_table); |
| check = xnmalloc (table_size, sizeof *check); |
| |
| lowzero = 0; |
| high = 0; |
| |
| for (i = 0; i < nvectors; i++) |
| base[i] = BASE_MINIMUM; |
| |
| for (i = 0; i < table_size; i++) |
| check[i] = -1; |
| |
| for (i = 0; i < nentries; i++) |
| { |
| state_number s = matching_state (i); |
| base_number place; |
| |
| if (s < 0) |
| /* A new set of state actions, or a nonterminal. */ |
| place = pack_vector (i); |
| else |
| /* Action of I were already coded for S. */ |
| place = base[s]; |
| |
| pos[i] = place; |
| base[order[i]] = place; |
| } |
| |
| /* Use the greatest possible negative infinites. */ |
| base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM); |
| table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM); |
| |
| free (pos); |
| } |
| |
| |
| |
| /*-----------------------------------------------------------------. |
| | Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable | |
| | and yycheck. | |
| `-----------------------------------------------------------------*/ |
| |
| void |
| tables_generate (void) |
| { |
| int i; |
| |
| /* This is a poor way to make sure the sizes are properly |
| correlated. In particular the signedness is not taken into |
| account. But it's not useless. */ |
| verify (sizeof nstates <= sizeof nvectors |
| && sizeof nvars <= sizeof nvectors); |
| |
| nvectors = state_number_as_int (nstates) + nvars; |
| |
| froms = xcalloc (nvectors, sizeof *froms); |
| tos = xcalloc (nvectors, sizeof *tos); |
| conflict_tos = xcalloc (nvectors, sizeof *conflict_tos); |
| tally = xcalloc (nvectors, sizeof *tally); |
| width = xnmalloc (nvectors, sizeof *width); |
| |
| token_actions (); |
| |
| goto_actions (); |
| free (goto_map); |
| free (from_state); |
| free (to_state); |
| |
| order = xcalloc (nvectors, sizeof *order); |
| sort_actions (); |
| pack_table (); |
| free (order); |
| |
| free (tally); |
| free (width); |
| |
| for (i = 0; i < nvectors; i++) |
| { |
| free (froms[i]); |
| free (tos[i]); |
| free (conflict_tos[i]); |
| } |
| |
| free (froms); |
| free (tos); |
| free (conflict_tos); |
| } |
| |
| |
| /*-------------------------. |
| | Free the parser tables. | |
| `-------------------------*/ |
| |
| void |
| tables_free (void) |
| { |
| free (base); |
| free (conflict_table); |
| free (conflict_list); |
| free (table); |
| free (check); |
| free (yydefgoto); |
| free (yydefact); |
| } |