blob: 76ca73627511b6fa036403a2ba565367b8f69df2 [file] [log] [blame]
-*- outline -*-
* Header guards
From Franc,ois: should we keep the directory part in the CPP guard?
* Yacc.c: CPP Macros
Do some people use YYPURE, YYLSP_NEEDED like we do in the test suite?
They should not: it is not documented. But if they need to, let's
find something clean (not like YYLSP_NEEDED...).
* Documentation
Before releasing, make sure the documentation ("Understanding your
parser") refers to the current `output' format.
* lalr1.cc
** vector
Move to using vector, drop stack.hh.
** I18n
Catch up with yacc.c.
* Report
** GLR
How would Paul like to display the conflicted actions? In particular,
what when two reductions are possible on a given look-ahead token, but one is
part of $default. Should we make the two reductions explicit, or just
keep $default? See the following point.
** Disabled Reductions
See `tests/conflicts.at (Defaulted Conflicted Reduction)', and decide
what we want to do.
** Documentation
Extend with error productions. The hard part will probably be finding
the right rule so that a single state does not exhibit too many yet
undocumented ``features''. Maybe an empty action ought to be
presented too. Shall we try to make a single grammar with all these
features, or should we have several very small grammars?
** --report=conflict-path
Provide better assistance for understanding the conflicts by providing
a sample text exhibiting the (LALR) ambiguity. See the paper from
DeRemer and Penello: they already provide the algorithm.
* Extensions
** Labeling the symbols
Have a look at the Lemon parser generator: instead of $1, $2 etc. they
can name the values. This is much more pleasant. For instance:
exp (res): exp (a) '+' exp (b) { $res = $a + $b; };
I love this. I have been bitten too often by the removal of the
symbol, and forgetting to shift all the $n to $n-1. If you are
unlucky, it compiles...
But instead of using $a etc., we can use regular variables. And
instead of using (), I propose to use `:' (again). Paul suggests
supporting `->' in addition to `:' to separate LHS and RHS. In other
words:
r:exp -> a:exp '+' b:exp { r = a + b; };
That requires an significant improvement of the grammar parser. Using
GLR would be nice. It also requires that Bison know the type of the
symbols (which will be useful for %include anyway). So we have some
time before...
Note that there remains the problem of locations: `@r'?
** $-1
We should find a means to provide an access to values deep in the
stack. For instance, instead of
baz: qux { $$ = $<foo>-1 + $<bar>0 + $1; }
we should be able to have:
foo($foo) bar($bar) baz($bar): qux($qux) { $baz = $foo + $bar + $qux; }
Or something like this.
** %if and the like
It should be possible to have %if/%else/%endif. The implementation is
not clear: should it be lexical or syntactic. Vadim Maslow thinks it
must be in the scanner: we must not parse what is in a switched off
part of %if. Akim Demaille thinks it should be in the parser, so as
to avoid falling into another CPP mistake.
** -D, --define-muscle NAME=VALUE
To define muscles via cli. Or maybe support directly NAME=VALUE?
** XML Output
There are couple of available extensions of Bison targeting some XML
output. Some day we should consider including them. One issue is
that they seem to be quite orthogonal to the parsing technique, and
seem to depend mostly on the possibility to have some code triggered
for each reduction. As a matter of fact, such hooks could also be
used to generate the yydebug traces. Some generic scheme probably
exists in there.
XML output for GNU Bison and gcc
http://www.cs.may.ie/~jpower/Research/bisonXML/
XML output for GNU Bison
http://yaxx.sourceforge.net/
* Unit rules
Maybe we could expand unit rules, i.e., transform
exp: arith | bool;
arith: exp '+' exp;
bool: exp '&' exp;
into
exp: exp '+' exp | exp '&' exp;
when there are no actions. This can significantly speed up some
grammars. I can't find the papers. In particular the book `LR
parsing: Theory and Practice' is impossible to find, but according to
`Parsing Techniques: a Practical Guide', it includes information about
this issue. Does anybody have it?
* Documentation
** History/Bibliography
Some history of Bison and some bibliography would be most welcome.
Are there any Texinfo standards for bibliography?
* Java, Fortran, etc.
** Java
There are a couple of proposed outputs:
- BYACC/J
which is based on Byacc.
<http://troi.lincom-asg.com/~rjamison/byacc/>
- Bison Java
which is based on Bison.
<http://www.goice.co.jp/member/mo/hack-progs/bison-java.html>
Sebastien Serrurier ([email protected]) is working on this: he is
expected to contact the authors, design the output, and implement it
into Bison.
* Coding system independence
Paul notes:
Currently Bison assumes 8-bit bytes (i.e. that UCHAR_MAX is
255). It also assumes that the 8-bit character encoding is
the same for the invocation of 'bison' as it is for the
invocation of 'cc', but this is not necessarily true when
people run bison on an ASCII host and then use cc on an EBCDIC
host. I don't think these topics are worth our time
addressing (unless we find a gung-ho volunteer for EBCDIC or
PDP-10 ports :-) but they should probably be documented
somewhere.
More importantly, Bison does not currently allow NUL bytes in
tokens, either via escapes (e.g., "x\0y") or via a NUL byte in
the source code. This should get fixed.
* --graph
Show reductions.
* Broken options ?
** %no-parser
** %token-table
** Skeleton strategy
Must we keep %no-parser? %token-table?
* src/print_graph.c
Find the best graph parameters.
* BTYacc
See if we can integrate backtracking in Bison. Charles-Henri de
Boysson <de-boy_c@epita.fr> is working on this, and already has some
results. Vadim Maslow, the maintainer of BTYacc was contacted, and we
stay in touch with him. Adjusting the Bison grammar parser will be
needed to support some extra BTYacc features. This is less urgent.
** Keeping the conflicted actions
First, analyze the differences between byacc and btyacc (I'm referring
to the executables). Find where the conflicts are preserved.
** Compare with the GLR tables
See how isomorphic the way BTYacc and the way the GLR adjustments in
Bison are compatible. *As much as possible* one should try to use the
same implementation in the Bison executables. I insist: it should be
very feasible to use the very same conflict tables.
** Adjust the skeletons
Import the skeletons for C and C++.
** Improve the skeletons
Have them support yysymprint, yydestruct and so forth.
* Precedence
** Partial order
It is unfortunate that there is a total order for precedence. It
makes it impossible to have modular precedence information. We should
move to partial orders (sounds like series/parallel orders to me).
This will be possible with a Bison parser for the grammar, as it will
make it much easier to extend the grammar.
** Correlation b/w precedence and associativity
Also, I fail to understand why we have to assign the same
associativity to operators with the same precedence. For instance,
why can't I decide that the precedence of * and / is the same, but the
latter is nonassoc?
If there is really no profound motivation, we should find a new syntax
to allow specifying this.
** RR conflicts
See if we can use precedence between rules to solve RR conflicts. See
what POSIX says.
* $undefined
From Hans:
- If the Bison generated parser experiences an undefined number in the
character range, that character is written out in diagnostic messages, an
addition to the $undefined value.
Suggest: Change the name $undefined to undefined; looks better in outputs.
* Default Action
From Hans:
- For use with my C++ parser, I transported the "switch (yyn)" statement
that Bison writes to the bison.simple skeleton file. This way, I can remove
the current default rule $$ = $1 implementation, which causes a double
assignment to $$ which may not be OK under C++, replacing it with a
"default:" part within the switch statement.
Note that the default rule $$ = $1, when typed, is perfectly OK under C,
but in the C++ implementation I made, this rule is different from
$<type_name>$ = $<type_name>1. I therefore think that one should implement
a Bison option where every typed default rule is explicitly written out
(same typed ruled can of course be grouped together).
Note: Robert Anisko handles this. He knows how to do it.
* Warnings
It would be nice to have warning support. See how Autoconf handles
them, it is fairly well described there. It would be very nice to
implement this in such a way that other programs could use
lib/warnings.[ch].
Don't work on this without first announcing you do, as I already have
thought about it, and know many of the components that can be used to
implement it.
* Pre and post actions.
From: Florian Krohm <[email protected]>
Subject: YYACT_EPILOGUE
To: [email protected]
X-Sent: 1 week, 4 days, 14 hours, 38 minutes, 11 seconds ago
The other day I had the need for explicitly building the parse tree. I
used %locations for that and defined YYLLOC_DEFAULT to call a function
that returns the tree node for the production. Easy. But I also needed
to assign the S-attribute to the tree node. That cannot be done in
YYLLOC_DEFAULT, because it is invoked before the action is executed.
The way I solved this was to define a macro YYACT_EPILOGUE that would
be invoked after the action. For reasons of symmetry I also added
YYACT_PROLOGUE. Although I had no use for that I can envision how it
might come in handy for debugging purposes.
All is needed is to add
#if YYLSP_NEEDED
YYACT_EPILOGUE (yyval, (yyvsp - yylen), yylen, yyloc, (yylsp - yylen));
#else
YYACT_EPILOGUE (yyval, (yyvsp - yylen), yylen);
#endif
at the proper place to bison.simple. Ditto for YYACT_PROLOGUE.
I was wondering what you think about adding YYACT_PROLOGUE/EPILOGUE
to bison. If you're interested, I'll work on a patch.
* Move to Graphviz
Well, VCG seems really dead. Move to Graphviz instead. Also, equip
the parser with a means to create the (visual) parse tree.
-----
Copyright (C) 2001, 2002, 2003, 2004, 2006 Free Software Foundation,
Inc.
This file is part of Bison, the GNU Compiler Compiler.
Bison is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Bison is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Bison; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.