| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/render_text_win.h" |
| |
| #include <algorithm> |
| |
| #include "base/i18n/break_iterator.h" |
| #include "base/i18n/rtl.h" |
| #include "base/logging.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "base/win/windows_version.h" |
| #include "third_party/icu/source/common/unicode/uchar.h" |
| #include "ui/gfx/canvas.h" |
| #include "ui/gfx/font_fallback_win.h" |
| #include "ui/gfx/font_smoothing_win.h" |
| #include "ui/gfx/platform_font_win.h" |
| #include "ui/gfx/utf16_indexing.h" |
| |
| namespace gfx { |
| |
| namespace { |
| |
| // The maximum length of text supported for Uniscribe layout and display. |
| // This empirically chosen value should prevent major performance degradations. |
| // TODO(msw): Support longer text, partial layout/painting, etc. |
| const size_t kMaxUniscribeTextLength = 10000; |
| |
| // The initial guess and maximum supported number of runs; arbitrary values. |
| // TODO(msw): Support more runs, determine a better initial guess, etc. |
| const int kGuessRuns = 100; |
| const size_t kMaxRuns = 10000; |
| |
| // The maximum number of glyphs per run; ScriptShape fails on larger values. |
| const size_t kMaxGlyphs = 65535; |
| |
| // Callback to |EnumEnhMetaFile()| to intercept font creation. |
| int CALLBACK MetaFileEnumProc(HDC hdc, |
| HANDLETABLE* table, |
| CONST ENHMETARECORD* record, |
| int table_entries, |
| LPARAM log_font) { |
| if (record->iType == EMR_EXTCREATEFONTINDIRECTW) { |
| const EMREXTCREATEFONTINDIRECTW* create_font_record = |
| reinterpret_cast<const EMREXTCREATEFONTINDIRECTW*>(record); |
| *reinterpret_cast<LOGFONT*>(log_font) = create_font_record->elfw.elfLogFont; |
| } |
| return 1; |
| } |
| |
| // Finds a fallback font to use to render the specified |text| with respect to |
| // an initial |font|. Returns the resulting font via out param |result|. Returns |
| // |true| if a fallback font was found. |
| // Adapted from WebKit's |FontCache::GetFontDataForCharacters()|. |
| // TODO(asvitkine): This should be moved to font_fallback_win.cc. |
| bool ChooseFallbackFont(HDC hdc, |
| const Font& font, |
| const wchar_t* text, |
| int text_length, |
| Font* result) { |
| // Use a meta file to intercept the fallback font chosen by Uniscribe. |
| HDC meta_file_dc = CreateEnhMetaFile(hdc, NULL, NULL, NULL); |
| if (!meta_file_dc) |
| return false; |
| |
| SelectObject(meta_file_dc, font.GetNativeFont()); |
| |
| SCRIPT_STRING_ANALYSIS script_analysis; |
| HRESULT hresult = |
| ScriptStringAnalyse(meta_file_dc, text, text_length, 0, -1, |
| SSA_METAFILE | SSA_FALLBACK | SSA_GLYPHS | SSA_LINK, |
| 0, NULL, NULL, NULL, NULL, NULL, &script_analysis); |
| |
| if (SUCCEEDED(hresult)) { |
| hresult = ScriptStringOut(script_analysis, 0, 0, 0, NULL, 0, 0, FALSE); |
| ScriptStringFree(&script_analysis); |
| } |
| |
| bool found_fallback = false; |
| HENHMETAFILE meta_file = CloseEnhMetaFile(meta_file_dc); |
| if (SUCCEEDED(hresult)) { |
| LOGFONT log_font; |
| log_font.lfFaceName[0] = 0; |
| EnumEnhMetaFile(0, meta_file, MetaFileEnumProc, &log_font, NULL); |
| if (log_font.lfFaceName[0]) { |
| *result = Font(UTF16ToUTF8(log_font.lfFaceName), font.GetFontSize()); |
| found_fallback = true; |
| } |
| } |
| DeleteEnhMetaFile(meta_file); |
| |
| return found_fallback; |
| } |
| |
| // Changes |font| to have the specified |font_size| (or |font_height| on Windows |
| // XP) and |font_style| if it is not the case already. Only considers bold and |
| // italic styles, since the underlined style has no effect on glyph shaping. |
| void DeriveFontIfNecessary(int font_size, |
| int font_height, |
| int font_style, |
| Font* font) { |
| const int kStyleMask = (Font::BOLD | Font::ITALIC); |
| const int target_style = (font_style & kStyleMask); |
| |
| // On Windows XP, the font must be resized using |font_height| instead of |
| // |font_size| to match GDI behavior. |
| if (base::win::GetVersion() < base::win::VERSION_VISTA) { |
| PlatformFontWin* platform_font = |
| static_cast<PlatformFontWin*>(font->platform_font()); |
| *font = platform_font->DeriveFontWithHeight(font_height, target_style); |
| return; |
| } |
| |
| const int current_style = (font->GetStyle() & kStyleMask); |
| const int current_size = font->GetFontSize(); |
| if (current_style != target_style || current_size != font_size) |
| *font = font->DeriveFont(font_size - current_size, target_style); |
| } |
| |
| // Returns true if |c| is a Unicode BiDi control character. |
| bool IsUnicodeBidiControlCharacter(char16 c) { |
| return c == base::i18n::kRightToLeftMark || |
| c == base::i18n::kLeftToRightMark || |
| c == base::i18n::kLeftToRightEmbeddingMark || |
| c == base::i18n::kRightToLeftEmbeddingMark || |
| c == base::i18n::kPopDirectionalFormatting || |
| c == base::i18n::kLeftToRightOverride || |
| c == base::i18n::kRightToLeftOverride; |
| } |
| |
| // Returns the corresponding glyph range of the given character range. |
| // |range| is in text-space (0 corresponds to |GetLayoutText()[0]|). |
| // Returned value is in run-space (0 corresponds to the first glyph in the run). |
| Range CharRangeToGlyphRange(const internal::TextRun& run, |
| const Range& range) { |
| DCHECK(run.range.Contains(range)); |
| DCHECK(!range.is_reversed()); |
| DCHECK(!range.is_empty()); |
| const Range run_range(range.start() - run.range.start(), |
| range.end() - run.range.start()); |
| Range result; |
| if (run.script_analysis.fRTL) { |
| result = Range(run.logical_clusters[run_range.end() - 1], |
| run_range.start() > 0 ? run.logical_clusters[run_range.start() - 1] |
| : run.glyph_count); |
| } else { |
| result = Range(run.logical_clusters[run_range.start()], |
| run_range.end() < run.range.length() ? |
| run.logical_clusters[run_range.end()] : run.glyph_count); |
| } |
| DCHECK(!result.is_reversed()); |
| DCHECK(Range(0, run.glyph_count).Contains(result)); |
| return result; |
| } |
| |
| // Starting from |start_char|, finds a suitable line break position at or before |
| // |available_width| using word break info from |breaks|. If |empty_line| is |
| // true, this function will not roll back to |start_char| and |*next_char| will |
| // be greater than |start_char| (to avoid constructing empty lines). |
| // TODO(ckocagil): Do not break ligatures and diacritics. |
| // TextRun::logical_clusters might help. |
| // TODO(ckocagil): We might have to reshape after breaking at ligatures. |
| // See whether resolving the TODO above resolves this too. |
| // TODO(ckocagil): Do not reserve width for whitespace at the end of lines. |
| void BreakRunAtWidth(const internal::TextRun& run, |
| const BreakList<size_t>& breaks, |
| size_t start_char, |
| int available_width, |
| bool empty_line, |
| int* width, |
| size_t* next_char) { |
| DCHECK(run.range.Contains(Range(start_char, start_char + 1))); |
| BreakList<size_t>::const_iterator word = breaks.GetBreak(start_char); |
| BreakList<size_t>::const_iterator next_word = word + 1; |
| // Width from |std::max(word->first, start_char)| to the current character. |
| int word_width = 0; |
| *width = 0; |
| |
| for (size_t i = start_char; i < run.range.end(); ++i) { |
| // |word| holds the word boundary at or before |i|, and |next_word| holds |
| // the word boundary right after |i|. Advance both |word| and |next_word| |
| // when |i| reaches |next_word|. |
| if (next_word != breaks.breaks().end() && i >= next_word->first) { |
| word = next_word++; |
| word_width = 0; |
| } |
| |
| Range glyph_range = CharRangeToGlyphRange(run, Range(i, i + 1)); |
| int char_width = 0; |
| for (size_t j = glyph_range.start(); j < glyph_range.end(); ++j) |
| char_width += run.advance_widths[j]; |
| |
| *width += char_width; |
| word_width += char_width; |
| |
| if (*width > available_width) { |
| if (!empty_line || word_width < *width) { |
| *width -= word_width; |
| *next_char = std::max(word->first, start_char); |
| } else if (char_width < *width) { |
| *width -= char_width; |
| *next_char = i; |
| } else { |
| *next_char = i + 1; |
| } |
| |
| return; |
| } |
| } |
| |
| *next_char = run.range.end(); |
| } |
| |
| // For segments in the same run, checks the continuity and order of |x_range| |
| // and |char_range| fields. |
| void CheckLineIntegrity(const std::vector<internal::Line>& lines, |
| const ScopedVector<internal::TextRun>& runs) { |
| size_t previous_segment_line = 0; |
| const internal::LineSegment* previous_segment = NULL; |
| |
| for (size_t i = 0; i < lines.size(); ++i) { |
| for (size_t j = 0; j < lines[i].segments.size(); ++j) { |
| const internal::LineSegment* segment = &lines[i].segments[j]; |
| internal::TextRun* run = runs[segment->run]; |
| |
| if (!previous_segment) { |
| previous_segment = segment; |
| } else if (runs[previous_segment->run] != run) { |
| previous_segment = NULL; |
| } else { |
| DCHECK_EQ(previous_segment->char_range.end(), |
| segment->char_range.start()); |
| if (!run->script_analysis.fRTL) { |
| DCHECK_EQ(previous_segment->x_range.end(), segment->x_range.start()); |
| } else { |
| DCHECK_EQ(segment->x_range.end(), previous_segment->x_range.start()); |
| } |
| |
| previous_segment = segment; |
| previous_segment_line = i; |
| } |
| } |
| } |
| } |
| |
| } // namespace |
| |
| namespace internal { |
| |
| TextRun::TextRun() |
| : font_style(0), |
| strike(false), |
| diagonal_strike(false), |
| underline(false), |
| width(0), |
| preceding_run_widths(0), |
| glyph_count(0), |
| script_cache(NULL) { |
| memset(&script_analysis, 0, sizeof(script_analysis)); |
| memset(&abc_widths, 0, sizeof(abc_widths)); |
| } |
| |
| TextRun::~TextRun() { |
| ScriptFreeCache(&script_cache); |
| } |
| |
| // Returns the X coordinate of the leading or |trailing| edge of the glyph |
| // starting at |index|, relative to the left of the text (not the view). |
| int GetGlyphXBoundary(const internal::TextRun* run, |
| size_t index, |
| bool trailing) { |
| DCHECK_GE(index, run->range.start()); |
| DCHECK_LT(index, run->range.end() + (trailing ? 0 : 1)); |
| int x = 0; |
| HRESULT hr = ScriptCPtoX( |
| index - run->range.start(), |
| trailing, |
| run->range.length(), |
| run->glyph_count, |
| run->logical_clusters.get(), |
| run->visible_attributes.get(), |
| run->advance_widths.get(), |
| &run->script_analysis, |
| &x); |
| DCHECK(SUCCEEDED(hr)); |
| return run->preceding_run_widths + x; |
| } |
| |
| // Internal class to generate Line structures. If |multiline| is true, the text |
| // is broken into lines at |words| boundaries such that each line is no longer |
| // than |max_width|. If |multiline| is false, only outputs a single Line from |
| // the given runs. |min_baseline| and |min_height| are the minimum baseline and |
| // height for each line. |
| // TODO(ckocagil): Expose the interface of this class in the header and test |
| // this class directly. |
| class LineBreaker { |
| public: |
| LineBreaker(int max_width, |
| int min_baseline, |
| int min_height, |
| bool multiline, |
| const BreakList<size_t>* words, |
| const ScopedVector<TextRun>& runs) |
| : max_width_(max_width), |
| min_baseline_(min_baseline), |
| min_height_(min_height), |
| multiline_(multiline), |
| words_(words), |
| runs_(runs), |
| text_x_(0), |
| line_x_(0), |
| line_ascent_(0), |
| line_descent_(0) { |
| AdvanceLine(); |
| } |
| |
| // Breaks the run at given |run_index| into Line structs. |
| void AddRun(int run_index) { |
| const TextRun* run = runs_[run_index]; |
| if (multiline_ && line_x_ + run->width > max_width_) |
| BreakRun(run_index); |
| else |
| AddSegment(run_index, run->range, run->width); |
| } |
| |
| // Finishes line breaking and outputs the results. Can be called at most once. |
| void Finalize(std::vector<Line>* lines, Size* size) { |
| DCHECK(!lines_.empty()); |
| // Add an empty line to finish the line size calculation and remove it. |
| AdvanceLine(); |
| lines_.pop_back(); |
| *size = total_size_; |
| lines->swap(lines_); |
| } |
| |
| private: |
| // A (line index, segment index) pair that specifies a segment in |lines_|. |
| typedef std::pair<size_t, size_t> SegmentHandle; |
| |
| LineSegment* SegmentFromHandle(const SegmentHandle& handle) { |
| return &lines_[handle.first].segments[handle.second]; |
| } |
| |
| // Breaks a run into segments that fit in the last line in |lines_| and adds |
| // them. Adds a new Line to the back of |lines_| whenever a new segment can't |
| // be added without the Line's width exceeding |max_width_|. |
| void BreakRun(int run_index) { |
| DCHECK(words_); |
| const TextRun* const run = runs_[run_index]; |
| int width = 0; |
| size_t next_char = run->range.start(); |
| |
| // Break the run until it fits the current line. |
| while (next_char < run->range.end()) { |
| const size_t current_char = next_char; |
| BreakRunAtWidth(*run, *words_, current_char, max_width_ - line_x_, |
| line_x_ == 0, &width, &next_char); |
| AddSegment(run_index, Range(current_char, next_char), width); |
| if (next_char < run->range.end()) |
| AdvanceLine(); |
| } |
| } |
| |
| // RTL runs are broken in logical order but displayed in visual order. To find |
| // the text-space coordinate (where it would fall in a single-line text) |
| // |x_range| of RTL segments, segment widths are applied in reverse order. |
| // e.g. {[5, 10], [10, 40]} will become {[35, 40], [5, 35]}. |
| void UpdateRTLSegmentRanges() { |
| if (rtl_segments_.empty()) |
| return; |
| int x = SegmentFromHandle(rtl_segments_[0])->x_range.start(); |
| for (size_t i = rtl_segments_.size(); i > 0; --i) { |
| LineSegment* segment = SegmentFromHandle(rtl_segments_[i - 1]); |
| const size_t segment_width = segment->x_range.length(); |
| segment->x_range = Range(x, x + segment_width); |
| x += segment_width; |
| } |
| rtl_segments_.clear(); |
| } |
| |
| // Finishes the size calculations of the last Line in |lines_|. Adds a new |
| // Line to the back of |lines_|. |
| void AdvanceLine() { |
| if (!lines_.empty()) { |
| Line* line = &lines_.back(); |
| // TODO(ckocagil): Determine optimal multiline height behavior. |
| if (line_ascent_ + line_descent_ == 0) { |
| line_ascent_ = min_baseline_; |
| line_descent_ = min_height_ - min_baseline_; |
| } |
| // Set the single-line mode Line's metrics to be at least |
| // |RenderText::font_list()| to not break the current single-line code. |
| line_ascent_ = std::max(line_ascent_, min_baseline_); |
| line_descent_ = std::max(line_descent_, min_height_ - min_baseline_); |
| |
| line->baseline = line_ascent_; |
| line->size.set_height(line_ascent_ + line_descent_); |
| line->preceding_heights = total_size_.height(); |
| total_size_.set_height(total_size_.height() + line->size.height()); |
| total_size_.set_width(std::max(total_size_.width(), line->size.width())); |
| } |
| line_x_ = 0; |
| line_ascent_ = 0; |
| line_descent_ = 0; |
| lines_.push_back(Line()); |
| } |
| |
| // Adds a new segment with the given properties to |lines_.back()|. |
| void AddSegment(int run_index, Range char_range, int width) { |
| if (char_range.is_empty()) { |
| DCHECK_EQ(width, 0); |
| return; |
| } |
| const TextRun* run = runs_[run_index]; |
| line_ascent_ = std::max(line_ascent_, run->font.GetBaseline()); |
| line_descent_ = std::max(line_descent_, |
| run->font.GetHeight() - run->font.GetBaseline()); |
| |
| LineSegment segment; |
| segment.run = run_index; |
| segment.char_range = char_range; |
| segment.x_range = Range(text_x_, text_x_ + width); |
| |
| Line* line = &lines_.back(); |
| line->segments.push_back(segment); |
| line->size.set_width(line->size.width() + segment.x_range.length()); |
| if (run->script_analysis.fRTL) { |
| rtl_segments_.push_back(SegmentHandle(lines_.size() - 1, |
| line->segments.size() - 1)); |
| // If this is the last segment of an RTL run, reprocess the text-space x |
| // ranges of all segments from the run. |
| if (char_range.end() == run->range.end()) |
| UpdateRTLSegmentRanges(); |
| } |
| text_x_ += width; |
| line_x_ += width; |
| } |
| |
| const int max_width_; |
| const int min_baseline_; |
| const int min_height_; |
| const bool multiline_; |
| const BreakList<size_t>* const words_; |
| const ScopedVector<TextRun>& runs_; |
| |
| // Stores the resulting lines. |
| std::vector<Line> lines_; |
| |
| // Text space and line space x coordinates of the next segment to be added. |
| int text_x_; |
| int line_x_; |
| |
| // Size of the multiline text, not including the currently processed line. |
| Size total_size_; |
| |
| // Ascent and descent values of the current line, |lines_.back()|. |
| int line_ascent_; |
| int line_descent_; |
| |
| // The current RTL run segments, to be applied by |UpdateRTLSegmentRanges()|. |
| std::vector<SegmentHandle> rtl_segments_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LineBreaker); |
| }; |
| |
| } // namespace internal |
| |
| // static |
| HDC RenderTextWin::cached_hdc_ = NULL; |
| |
| // static |
| std::map<std::string, Font> RenderTextWin::successful_substitute_fonts_; |
| |
| RenderTextWin::RenderTextWin() |
| : RenderText(), |
| needs_layout_(false) { |
| set_truncate_length(kMaxUniscribeTextLength); |
| |
| memset(&script_control_, 0, sizeof(script_control_)); |
| memset(&script_state_, 0, sizeof(script_state_)); |
| |
| MoveCursorTo(EdgeSelectionModel(CURSOR_LEFT)); |
| } |
| |
| RenderTextWin::~RenderTextWin() { |
| } |
| |
| Size RenderTextWin::GetStringSize() { |
| EnsureLayout(); |
| return multiline_string_size_; |
| } |
| |
| int RenderTextWin::GetBaseline() { |
| EnsureLayout(); |
| return lines()[0].baseline; |
| } |
| |
| SelectionModel RenderTextWin::FindCursorPosition(const Point& point) { |
| if (text().empty()) |
| return SelectionModel(); |
| |
| EnsureLayout(); |
| // Find the run that contains the point and adjust the argument location. |
| int x = ToTextPoint(point).x(); |
| size_t run_index = GetRunContainingXCoord(x); |
| if (run_index >= runs_.size()) |
| return EdgeSelectionModel((x < 0) ? CURSOR_LEFT : CURSOR_RIGHT); |
| internal::TextRun* run = runs_[run_index]; |
| |
| int position = 0, trailing = 0; |
| HRESULT hr = ScriptXtoCP(x - run->preceding_run_widths, |
| run->range.length(), |
| run->glyph_count, |
| run->logical_clusters.get(), |
| run->visible_attributes.get(), |
| run->advance_widths.get(), |
| &(run->script_analysis), |
| &position, |
| &trailing); |
| DCHECK(SUCCEEDED(hr)); |
| DCHECK_GE(trailing, 0); |
| position += run->range.start(); |
| const size_t cursor = LayoutIndexToTextIndex(position + trailing); |
| DCHECK_LE(cursor, text().length()); |
| return SelectionModel(cursor, trailing ? CURSOR_BACKWARD : CURSOR_FORWARD); |
| } |
| |
| std::vector<RenderText::FontSpan> RenderTextWin::GetFontSpansForTesting() { |
| EnsureLayout(); |
| |
| std::vector<RenderText::FontSpan> spans; |
| for (size_t i = 0; i < runs_.size(); ++i) { |
| spans.push_back(RenderText::FontSpan(runs_[i]->font, |
| Range(LayoutIndexToTextIndex(runs_[i]->range.start()), |
| LayoutIndexToTextIndex(runs_[i]->range.end())))); |
| } |
| |
| return spans; |
| } |
| |
| SelectionModel RenderTextWin::AdjacentCharSelectionModel( |
| const SelectionModel& selection, |
| VisualCursorDirection direction) { |
| DCHECK(!needs_layout_); |
| internal::TextRun* run; |
| size_t run_index = GetRunContainingCaret(selection); |
| if (run_index >= runs_.size()) { |
| // The cursor is not in any run: we're at the visual and logical edge. |
| SelectionModel edge = EdgeSelectionModel(direction); |
| if (edge.caret_pos() == selection.caret_pos()) |
| return edge; |
| int visual_index = (direction == CURSOR_RIGHT) ? 0 : runs_.size() - 1; |
| run = runs_[visual_to_logical_[visual_index]]; |
| } else { |
| // If the cursor is moving within the current run, just move it by one |
| // grapheme in the appropriate direction. |
| run = runs_[run_index]; |
| size_t caret = selection.caret_pos(); |
| bool forward_motion = |
| run->script_analysis.fRTL == (direction == CURSOR_LEFT); |
| if (forward_motion) { |
| if (caret < LayoutIndexToTextIndex(run->range.end())) { |
| caret = IndexOfAdjacentGrapheme(caret, CURSOR_FORWARD); |
| return SelectionModel(caret, CURSOR_BACKWARD); |
| } |
| } else { |
| if (caret > LayoutIndexToTextIndex(run->range.start())) { |
| caret = IndexOfAdjacentGrapheme(caret, CURSOR_BACKWARD); |
| return SelectionModel(caret, CURSOR_FORWARD); |
| } |
| } |
| // The cursor is at the edge of a run; move to the visually adjacent run. |
| int visual_index = logical_to_visual_[run_index]; |
| visual_index += (direction == CURSOR_LEFT) ? -1 : 1; |
| if (visual_index < 0 || visual_index >= static_cast<int>(runs_.size())) |
| return EdgeSelectionModel(direction); |
| run = runs_[visual_to_logical_[visual_index]]; |
| } |
| bool forward_motion = run->script_analysis.fRTL == (direction == CURSOR_LEFT); |
| return forward_motion ? FirstSelectionModelInsideRun(run) : |
| LastSelectionModelInsideRun(run); |
| } |
| |
| // TODO(msw): Implement word breaking for Windows. |
| SelectionModel RenderTextWin::AdjacentWordSelectionModel( |
| const SelectionModel& selection, |
| VisualCursorDirection direction) { |
| if (obscured()) |
| return EdgeSelectionModel(direction); |
| |
| base::i18n::BreakIterator iter(text(), base::i18n::BreakIterator::BREAK_WORD); |
| bool success = iter.Init(); |
| DCHECK(success); |
| if (!success) |
| return selection; |
| |
| size_t pos; |
| if (direction == CURSOR_RIGHT) { |
| pos = std::min(selection.caret_pos() + 1, text().length()); |
| while (iter.Advance()) { |
| pos = iter.pos(); |
| if (iter.IsWord() && pos > selection.caret_pos()) |
| break; |
| } |
| } else { // direction == CURSOR_LEFT |
| // Notes: We always iterate words from the beginning. |
| // This is probably fast enough for our usage, but we may |
| // want to modify WordIterator so that it can start from the |
| // middle of string and advance backwards. |
| pos = std::max<int>(selection.caret_pos() - 1, 0); |
| while (iter.Advance()) { |
| if (iter.IsWord()) { |
| size_t begin = iter.pos() - iter.GetString().length(); |
| if (begin == selection.caret_pos()) { |
| // The cursor is at the beginning of a word. |
| // Move to previous word. |
| break; |
| } else if (iter.pos() >= selection.caret_pos()) { |
| // The cursor is in the middle or at the end of a word. |
| // Move to the top of current word. |
| pos = begin; |
| break; |
| } else { |
| pos = iter.pos() - iter.GetString().length(); |
| } |
| } |
| } |
| } |
| return SelectionModel(pos, CURSOR_FORWARD); |
| } |
| |
| Range RenderTextWin::GetGlyphBounds(size_t index) { |
| const size_t run_index = |
| GetRunContainingCaret(SelectionModel(index, CURSOR_FORWARD)); |
| // Return edge bounds if the index is invalid or beyond the layout text size. |
| if (run_index >= runs_.size()) |
| return Range(string_width_); |
| internal::TextRun* run = runs_[run_index]; |
| const size_t layout_index = TextIndexToLayoutIndex(index); |
| return Range(GetGlyphXBoundary(run, layout_index, false), |
| GetGlyphXBoundary(run, layout_index, true)); |
| } |
| |
| std::vector<Rect> RenderTextWin::GetSubstringBounds(const Range& range) { |
| DCHECK(!needs_layout_); |
| DCHECK(Range(0, text().length()).Contains(range)); |
| Range layout_range(TextIndexToLayoutIndex(range.start()), |
| TextIndexToLayoutIndex(range.end())); |
| DCHECK(Range(0, GetLayoutText().length()).Contains(layout_range)); |
| |
| std::vector<Rect> rects; |
| if (layout_range.is_empty()) |
| return rects; |
| std::vector<Range> bounds; |
| |
| // Add a Range for each run/selection intersection. |
| // TODO(msw): The bounds should probably not always be leading the range ends. |
| for (size_t i = 0; i < runs_.size(); ++i) { |
| const internal::TextRun* run = runs_[visual_to_logical_[i]]; |
| Range intersection = run->range.Intersect(layout_range); |
| if (intersection.IsValid()) { |
| DCHECK(!intersection.is_reversed()); |
| Range range_x(GetGlyphXBoundary(run, intersection.start(), false), |
| GetGlyphXBoundary(run, intersection.end(), false)); |
| if (range_x.is_empty()) |
| continue; |
| range_x = Range(range_x.GetMin(), range_x.GetMax()); |
| // Union this with the last range if they're adjacent. |
| DCHECK(bounds.empty() || bounds.back().GetMax() <= range_x.GetMin()); |
| if (!bounds.empty() && bounds.back().GetMax() == range_x.GetMin()) { |
| range_x = Range(bounds.back().GetMin(), range_x.GetMax()); |
| bounds.pop_back(); |
| } |
| bounds.push_back(range_x); |
| } |
| } |
| for (size_t i = 0; i < bounds.size(); ++i) { |
| std::vector<Rect> current_rects = TextBoundsToViewBounds(bounds[i]); |
| rects.insert(rects.end(), current_rects.begin(), current_rects.end()); |
| } |
| return rects; |
| } |
| |
| size_t RenderTextWin::TextIndexToLayoutIndex(size_t index) const { |
| DCHECK_LE(index, text().length()); |
| ptrdiff_t i = obscured() ? gfx::UTF16IndexToOffset(text(), 0, index) : index; |
| CHECK_GE(i, 0); |
| // Clamp layout indices to the length of the text actually used for layout. |
| return std::min<size_t>(GetLayoutText().length(), i); |
| } |
| |
| size_t RenderTextWin::LayoutIndexToTextIndex(size_t index) const { |
| if (!obscured()) |
| return index; |
| |
| DCHECK_LE(index, GetLayoutText().length()); |
| const size_t text_index = gfx::UTF16OffsetToIndex(text(), 0, index); |
| DCHECK_LE(text_index, text().length()); |
| return text_index; |
| } |
| |
| bool RenderTextWin::IsCursorablePosition(size_t position) { |
| if (position == 0 || position == text().length()) |
| return true; |
| EnsureLayout(); |
| |
| // Check that the index is at a valid code point (not mid-surrgate-pair), |
| // that it is not truncated from layout text (its glyph is shown on screen), |
| // and that its glyph has distinct bounds (not mid-multi-character-grapheme). |
| // An example of a multi-character-grapheme that is not a surrogate-pair is: |
| // \x0915\x093f - (ki) - one of many Devanagari biconsonantal conjuncts. |
| return gfx::IsValidCodePointIndex(text(), position) && |
| position < LayoutIndexToTextIndex(GetLayoutText().length()) && |
| GetGlyphBounds(position) != GetGlyphBounds(position - 1); |
| } |
| |
| void RenderTextWin::ResetLayout() { |
| // Layout is performed lazily as needed for drawing/metrics. |
| needs_layout_ = true; |
| } |
| |
| void RenderTextWin::EnsureLayout() { |
| if (needs_layout_) { |
| // TODO(msw): Skip complex processing if ScriptIsComplex returns false. |
| ItemizeLogicalText(); |
| if (!runs_.empty()) |
| LayoutVisualText(); |
| needs_layout_ = false; |
| std::vector<internal::Line> lines; |
| set_lines(&lines); |
| } |
| |
| // Compute lines if they're not valid. This is separate from the layout steps |
| // above to avoid text layout and shaping when we resize |display_rect_|. |
| if (lines().empty()) { |
| DCHECK(!needs_layout_); |
| std::vector<internal::Line> lines; |
| internal::LineBreaker line_breaker(display_rect().width() - 1, |
| font_list().GetBaseline(), |
| font_list().GetHeight(), multiline(), |
| multiline() ? &GetLineBreaks() : NULL, |
| runs_); |
| for (size_t i = 0; i < runs_.size(); ++i) |
| line_breaker.AddRun(visual_to_logical_[i]); |
| line_breaker.Finalize(&lines, &multiline_string_size_); |
| DCHECK(!lines.empty()); |
| #ifndef NDEBUG |
| CheckLineIntegrity(lines, runs_); |
| #endif |
| set_lines(&lines); |
| } |
| } |
| |
| void RenderTextWin::DrawVisualText(Canvas* canvas) { |
| DCHECK(!needs_layout_); |
| DCHECK(!lines().empty()); |
| |
| std::vector<SkPoint> pos; |
| |
| internal::SkiaTextRenderer renderer(canvas); |
| ApplyFadeEffects(&renderer); |
| ApplyTextShadows(&renderer); |
| |
| bool smoothing_enabled; |
| bool cleartype_enabled; |
| GetCachedFontSmoothingSettings(&smoothing_enabled, &cleartype_enabled); |
| // Note that |cleartype_enabled| corresponds to Skia's |enable_lcd_text|. |
| renderer.SetFontSmoothingSettings( |
| smoothing_enabled, cleartype_enabled && !background_is_transparent()); |
| |
| ApplyCompositionAndSelectionStyles(); |
| |
| for (size_t i = 0; i < lines().size(); ++i) { |
| const internal::Line& line = lines()[i]; |
| const Vector2d line_offset = GetLineOffset(i); |
| |
| // Skip painting empty lines or lines outside the display rect area. |
| if (!display_rect().Intersects(Rect(PointAtOffsetFromOrigin(line_offset), |
| line.size))) |
| continue; |
| |
| const Vector2d text_offset = line_offset + Vector2d(0, line.baseline); |
| int preceding_segment_widths = 0; |
| |
| for (size_t j = 0; j < line.segments.size(); ++j) { |
| const internal::LineSegment* segment = &line.segments[j]; |
| const int segment_width = segment->x_range.length(); |
| const internal::TextRun* run = runs_[segment->run]; |
| DCHECK(!segment->char_range.is_empty()); |
| DCHECK(run->range.Contains(segment->char_range)); |
| Range glyph_range = CharRangeToGlyphRange(*run, segment->char_range); |
| DCHECK(!glyph_range.is_empty()); |
| // Skip painting segments outside the display rect area. |
| if (!multiline()) { |
| const Rect segment_bounds(PointAtOffsetFromOrigin(line_offset) + |
| Vector2d(preceding_segment_widths, 0), |
| Size(segment_width, line.size.height())); |
| if (!display_rect().Intersects(segment_bounds)) { |
| preceding_segment_widths += segment_width; |
| continue; |
| } |
| } |
| |
| // |pos| contains the positions of glyphs. An extra terminal |pos| entry |
| // is added to simplify width calculations. |
| int segment_x = preceding_segment_widths; |
| pos.resize(glyph_range.length() + 1); |
| for (size_t k = glyph_range.start(); k < glyph_range.end(); ++k) { |
| pos[k - glyph_range.start()].set( |
| SkIntToScalar(text_offset.x() + run->offsets[k].du + segment_x), |
| SkIntToScalar(text_offset.y() + run->offsets[k].dv)); |
| segment_x += run->advance_widths[k]; |
| } |
| pos.back().set(SkIntToScalar(text_offset.x() + segment_x), |
| SkIntToScalar(text_offset.y())); |
| |
| renderer.SetTextSize(run->font.GetFontSize()); |
| renderer.SetFontFamilyWithStyle(run->font.GetFontName(), run->font_style); |
| |
| for (BreakList<SkColor>::const_iterator it = |
| colors().GetBreak(segment->char_range.start()); |
| it != colors().breaks().end() && |
| it->first < segment->char_range.end(); |
| ++it) { |
| const Range intersection = |
| colors().GetRange(it).Intersect(segment->char_range); |
| const Range colored_glyphs = CharRangeToGlyphRange(*run, intersection); |
| DCHECK(glyph_range.Contains(colored_glyphs)); |
| DCHECK(!colored_glyphs.is_empty()); |
| const SkPoint& start_pos = |
| pos[colored_glyphs.start() - glyph_range.start()]; |
| const SkPoint& end_pos = |
| pos[colored_glyphs.end() - glyph_range.start()]; |
| |
| renderer.SetForegroundColor(it->second); |
| renderer.DrawPosText(&start_pos, &run->glyphs[colored_glyphs.start()], |
| colored_glyphs.length()); |
| renderer.DrawDecorations(start_pos.x(), text_offset.y(), |
| SkScalarCeilToInt(end_pos.x() - start_pos.x()), |
| run->underline, run->strike, |
| run->diagonal_strike); |
| } |
| |
| preceding_segment_widths += segment_width; |
| } |
| } |
| |
| UndoCompositionAndSelectionStyles(); |
| } |
| |
| void RenderTextWin::ItemizeLogicalText() { |
| runs_.clear(); |
| string_width_ = 0; |
| multiline_string_size_ = Size(); |
| |
| // Set Uniscribe's base text direction. |
| script_state_.uBidiLevel = |
| (GetTextDirection() == base::i18n::RIGHT_TO_LEFT) ? 1 : 0; |
| |
| if (text().empty()) |
| return; |
| |
| HRESULT hr = E_OUTOFMEMORY; |
| int script_items_count = 0; |
| std::vector<SCRIPT_ITEM> script_items; |
| const size_t layout_text_length = GetLayoutText().length(); |
| // Ensure that |kMaxRuns| is attempted and the loop terminates afterward. |
| for (size_t runs = kGuessRuns; hr == E_OUTOFMEMORY && runs <= kMaxRuns; |
| runs = std::max(runs + 1, std::min(runs * 2, kMaxRuns))) { |
| // Derive the array of Uniscribe script items from the logical text. |
| // ScriptItemize always adds a terminal array item so that the length of |
| // the last item can be derived from the terminal SCRIPT_ITEM::iCharPos. |
| script_items.resize(runs); |
| hr = ScriptItemize(GetLayoutText().c_str(), layout_text_length, |
| runs - 1, &script_control_, &script_state_, |
| &script_items[0], &script_items_count); |
| } |
| DCHECK(SUCCEEDED(hr)); |
| if (!SUCCEEDED(hr) || script_items_count <= 0) |
| return; |
| |
| // Temporarily apply composition underlines and selection colors. |
| ApplyCompositionAndSelectionStyles(); |
| |
| // Build the list of runs from the script items and ranged styles. Use an |
| // empty color BreakList to avoid breaking runs at color boundaries. |
| BreakList<SkColor> empty_colors; |
| empty_colors.SetMax(text().length()); |
| internal::StyleIterator style(empty_colors, styles()); |
| SCRIPT_ITEM* script_item = &script_items[0]; |
| const size_t max_run_length = kMaxGlyphs / 2; |
| for (size_t run_break = 0; run_break < layout_text_length;) { |
| internal::TextRun* run = new internal::TextRun(); |
| run->range.set_start(run_break); |
| run->font = GetPrimaryFont(); |
| run->font_style = (style.style(BOLD) ? Font::BOLD : 0) | |
| (style.style(ITALIC) ? Font::ITALIC : 0); |
| DeriveFontIfNecessary(run->font.GetFontSize(), run->font.GetHeight(), |
| run->font_style, &run->font); |
| run->strike = style.style(STRIKE); |
| run->diagonal_strike = style.style(DIAGONAL_STRIKE); |
| run->underline = style.style(UNDERLINE); |
| run->script_analysis = script_item->a; |
| |
| // Find the next break and advance the iterators as needed. |
| const size_t script_item_break = (script_item + 1)->iCharPos; |
| run_break = std::min(script_item_break, |
| TextIndexToLayoutIndex(style.GetRange().end())); |
| // Clamp run lengths to avoid exceeding the maximum supported glyph count. |
| if ((run_break - run->range.start()) > max_run_length) |
| run_break = run->range.start() + max_run_length; |
| style.UpdatePosition(LayoutIndexToTextIndex(run_break)); |
| if (script_item_break == run_break) |
| script_item++; |
| run->range.set_end(run_break); |
| runs_.push_back(run); |
| } |
| |
| // Undo the temporarily applied composition underlines and selection colors. |
| UndoCompositionAndSelectionStyles(); |
| } |
| |
| void RenderTextWin::LayoutVisualText() { |
| DCHECK(!runs_.empty()); |
| |
| if (!cached_hdc_) |
| cached_hdc_ = CreateCompatibleDC(NULL); |
| |
| HRESULT hr = E_FAIL; |
| // Ensure ascent and descent are not smaller than ones of the font list. |
| // Keep them tall enough to draw often-used characters. |
| // For example, if a text field contains a Japanese character, which is |
| // smaller than Latin ones, and then later a Latin one is inserted, this |
| // ensures that the text baseline does not shift. |
| int ascent = font_list().GetBaseline(); |
| int descent = font_list().GetHeight() - font_list().GetBaseline(); |
| for (size_t i = 0; i < runs_.size(); ++i) { |
| internal::TextRun* run = runs_[i]; |
| LayoutTextRun(run); |
| |
| ascent = std::max(ascent, run->font.GetBaseline()); |
| descent = std::max(descent, |
| run->font.GetHeight() - run->font.GetBaseline()); |
| |
| if (run->glyph_count > 0) { |
| run->advance_widths.reset(new int[run->glyph_count]); |
| run->offsets.reset(new GOFFSET[run->glyph_count]); |
| hr = ScriptPlace(cached_hdc_, |
| &run->script_cache, |
| run->glyphs.get(), |
| run->glyph_count, |
| run->visible_attributes.get(), |
| &(run->script_analysis), |
| run->advance_widths.get(), |
| run->offsets.get(), |
| &(run->abc_widths)); |
| DCHECK(SUCCEEDED(hr)); |
| } |
| } |
| |
| // Build the array of bidirectional embedding levels. |
| scoped_ptr<BYTE[]> levels(new BYTE[runs_.size()]); |
| for (size_t i = 0; i < runs_.size(); ++i) |
| levels[i] = runs_[i]->script_analysis.s.uBidiLevel; |
| |
| // Get the maps between visual and logical run indices. |
| visual_to_logical_.reset(new int[runs_.size()]); |
| logical_to_visual_.reset(new int[runs_.size()]); |
| hr = ScriptLayout(runs_.size(), |
| levels.get(), |
| visual_to_logical_.get(), |
| logical_to_visual_.get()); |
| DCHECK(SUCCEEDED(hr)); |
| |
| // Precalculate run width information. |
| size_t preceding_run_widths = 0; |
| for (size_t i = 0; i < runs_.size(); ++i) { |
| internal::TextRun* run = runs_[visual_to_logical_[i]]; |
| run->preceding_run_widths = preceding_run_widths; |
| const ABC& abc = run->abc_widths; |
| run->width = abc.abcA + abc.abcB + abc.abcC; |
| preceding_run_widths += run->width; |
| } |
| string_width_ = preceding_run_widths; |
| } |
| |
| void RenderTextWin::LayoutTextRun(internal::TextRun* run) { |
| const size_t run_length = run->range.length(); |
| const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); |
| Font original_font = run->font; |
| LinkedFontsIterator fonts(original_font); |
| bool tried_cached_font = false; |
| bool tried_fallback = false; |
| // Keep track of the font that is able to display the greatest number of |
| // characters for which ScriptShape() returned S_OK. This font will be used |
| // in the case where no font is able to display the entire run. |
| int best_partial_font_missing_char_count = INT_MAX; |
| Font best_partial_font = original_font; |
| Font current_font; |
| |
| run->logical_clusters.reset(new WORD[run_length]); |
| while (fonts.NextFont(¤t_font)) { |
| HRESULT hr = ShapeTextRunWithFont(run, current_font); |
| |
| bool glyphs_missing = false; |
| if (hr == USP_E_SCRIPT_NOT_IN_FONT) { |
| glyphs_missing = true; |
| } else if (hr == S_OK) { |
| // If |hr| is S_OK, there could still be missing glyphs in the output. |
| // http://msdn.microsoft.com/en-us/library/windows/desktop/dd368564.aspx |
| const int missing_count = CountCharsWithMissingGlyphs(run); |
| // Track the font that produced the least missing glyphs. |
| if (missing_count < best_partial_font_missing_char_count) { |
| best_partial_font_missing_char_count = missing_count; |
| best_partial_font = run->font; |
| } |
| glyphs_missing = (missing_count != 0); |
| } else { |
| NOTREACHED() << hr; |
| } |
| |
| // Use the font if it had glyphs for all characters. |
| if (!glyphs_missing) { |
| // Save the successful fallback font that was chosen. |
| if (tried_fallback) |
| successful_substitute_fonts_[original_font.GetFontName()] = run->font; |
| return; |
| } |
| |
| // First, try the cached font from previous runs, if any. |
| if (!tried_cached_font) { |
| tried_cached_font = true; |
| |
| std::map<std::string, Font>::const_iterator it = |
| successful_substitute_fonts_.find(original_font.GetFontName()); |
| if (it != successful_substitute_fonts_.end()) { |
| fonts.SetNextFont(it->second); |
| continue; |
| } |
| } |
| |
| // If there are missing glyphs, first try finding a fallback font using a |
| // meta file, if it hasn't yet been attempted for this run. |
| // TODO(msw|asvitkine): Support RenderText's font_list()? |
| if (!tried_fallback) { |
| tried_fallback = true; |
| |
| Font fallback_font; |
| if (ChooseFallbackFont(cached_hdc_, run->font, run_text, run_length, |
| &fallback_font)) { |
| fonts.SetNextFont(fallback_font); |
| continue; |
| } |
| } |
| } |
| |
| // If a font was able to partially display the run, use that now. |
| if (best_partial_font_missing_char_count < static_cast<int>(run_length)) { |
| // Re-shape the run only if |best_partial_font| differs from the last font. |
| if (best_partial_font.GetNativeFont() != run->font.GetNativeFont()) |
| ShapeTextRunWithFont(run, best_partial_font); |
| return; |
| } |
| |
| // If no font was able to partially display the run, replace all glyphs |
| // with |wgDefault| from the original font to ensure to they don't hold |
| // garbage values. |
| // First, clear the cache and select the original font on the HDC. |
| ScriptFreeCache(&run->script_cache); |
| run->font = original_font; |
| SelectObject(cached_hdc_, run->font.GetNativeFont()); |
| |
| // Now, get the font's properties. |
| SCRIPT_FONTPROPERTIES properties; |
| memset(&properties, 0, sizeof(properties)); |
| properties.cBytes = sizeof(properties); |
| HRESULT hr = ScriptGetFontProperties(cached_hdc_, &run->script_cache, |
| &properties); |
| |
| // The initial values for the "missing" glyph and the space glyph are taken |
| // from the recommendations section of the OpenType spec: |
| // https://www.microsoft.com/typography/otspec/recom.htm |
| WORD missing_glyph = 0; |
| WORD space_glyph = 3; |
| if (hr == S_OK) { |
| missing_glyph = properties.wgDefault; |
| space_glyph = properties.wgBlank; |
| } |
| |
| // Finally, initialize |glyph_count|, |glyphs|, |visible_attributes| and |
| // |logical_clusters| on the run (since they may not have been set yet). |
| run->glyph_count = run_length; |
| memset(run->visible_attributes.get(), 0, |
| run->glyph_count * sizeof(SCRIPT_VISATTR)); |
| for (int i = 0; i < run->glyph_count; ++i) |
| run->glyphs[i] = IsWhitespace(run_text[i]) ? space_glyph : missing_glyph; |
| for (size_t i = 0; i < run_length; ++i) { |
| run->logical_clusters[i] = run->script_analysis.fRTL ? |
| run_length - 1 - i : i; |
| } |
| |
| // TODO(msw): Don't use SCRIPT_UNDEFINED. Apparently Uniscribe can |
| // crash on certain surrogate pairs with SCRIPT_UNDEFINED. |
| // See https://bugzilla.mozilla.org/show_bug.cgi?id=341500 |
| // And http://maxradi.us/documents/uniscribe/ |
| run->script_analysis.eScript = SCRIPT_UNDEFINED; |
| } |
| |
| HRESULT RenderTextWin::ShapeTextRunWithFont(internal::TextRun* run, |
| const Font& font) { |
| // Update the run's font only if necessary. If the two fonts wrap the same |
| // PlatformFontWin object, their native fonts will have the same value. |
| if (run->font.GetNativeFont() != font.GetNativeFont()) { |
| const int font_size = run->font.GetFontSize(); |
| const int font_height = run->font.GetHeight(); |
| run->font = font; |
| DeriveFontIfNecessary(font_size, font_height, run->font_style, &run->font); |
| ScriptFreeCache(&run->script_cache); |
| } |
| |
| // Select the font desired for glyph generation. |
| SelectObject(cached_hdc_, run->font.GetNativeFont()); |
| |
| HRESULT hr = E_OUTOFMEMORY; |
| const size_t run_length = run->range.length(); |
| const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); |
| // Guess the expected number of glyphs from the length of the run. |
| // MSDN suggests this at http://msdn.microsoft.com/en-us/library/dd368564.aspx |
| size_t max_glyphs = static_cast<size_t>(1.5 * run_length + 16); |
| while (hr == E_OUTOFMEMORY && max_glyphs <= kMaxGlyphs) { |
| run->glyph_count = 0; |
| run->glyphs.reset(new WORD[max_glyphs]); |
| run->visible_attributes.reset(new SCRIPT_VISATTR[max_glyphs]); |
| hr = ScriptShape(cached_hdc_, &run->script_cache, run_text, run_length, |
| max_glyphs, &run->script_analysis, run->glyphs.get(), |
| run->logical_clusters.get(), run->visible_attributes.get(), |
| &run->glyph_count); |
| // Ensure that |kMaxGlyphs| is attempted and the loop terminates afterward. |
| max_glyphs = std::max(max_glyphs + 1, std::min(max_glyphs * 2, kMaxGlyphs)); |
| } |
| return hr; |
| } |
| |
| int RenderTextWin::CountCharsWithMissingGlyphs(internal::TextRun* run) const { |
| int chars_not_missing_glyphs = 0; |
| SCRIPT_FONTPROPERTIES properties; |
| memset(&properties, 0, sizeof(properties)); |
| properties.cBytes = sizeof(properties); |
| ScriptGetFontProperties(cached_hdc_, &run->script_cache, &properties); |
| |
| const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); |
| for (size_t char_index = 0; char_index < run->range.length(); ++char_index) { |
| const int glyph_index = run->logical_clusters[char_index]; |
| DCHECK_GE(glyph_index, 0); |
| DCHECK_LT(glyph_index, run->glyph_count); |
| |
| if (run->glyphs[glyph_index] == properties.wgDefault) |
| continue; |
| |
| // Windows Vista sometimes returns glyphs equal to wgBlank (instead of |
| // wgDefault), with fZeroWidth set. Treat such cases as having missing |
| // glyphs if the corresponding character is not whitespace. |
| // See: http://crbug.com/125629 |
| if (run->glyphs[glyph_index] == properties.wgBlank && |
| run->visible_attributes[glyph_index].fZeroWidth && |
| !IsWhitespace(run_text[char_index]) && |
| !IsUnicodeBidiControlCharacter(run_text[char_index])) { |
| continue; |
| } |
| |
| ++chars_not_missing_glyphs; |
| } |
| |
| DCHECK_LE(chars_not_missing_glyphs, static_cast<int>(run->range.length())); |
| return run->range.length() - chars_not_missing_glyphs; |
| } |
| |
| size_t RenderTextWin::GetRunContainingCaret(const SelectionModel& caret) const { |
| DCHECK(!needs_layout_); |
| size_t layout_position = TextIndexToLayoutIndex(caret.caret_pos()); |
| LogicalCursorDirection affinity = caret.caret_affinity(); |
| for (size_t run = 0; run < runs_.size(); ++run) |
| if (RangeContainsCaret(runs_[run]->range, layout_position, affinity)) |
| return run; |
| return runs_.size(); |
| } |
| |
| size_t RenderTextWin::GetRunContainingXCoord(int x) const { |
| DCHECK(!needs_layout_); |
| // Find the text run containing the argument point (assumed already offset). |
| for (size_t run = 0; run < runs_.size(); ++run) { |
| if ((runs_[run]->preceding_run_widths <= x) && |
| ((runs_[run]->preceding_run_widths + runs_[run]->width) > x)) |
| return run; |
| } |
| return runs_.size(); |
| } |
| |
| SelectionModel RenderTextWin::FirstSelectionModelInsideRun( |
| const internal::TextRun* run) { |
| size_t position = LayoutIndexToTextIndex(run->range.start()); |
| position = IndexOfAdjacentGrapheme(position, CURSOR_FORWARD); |
| return SelectionModel(position, CURSOR_BACKWARD); |
| } |
| |
| SelectionModel RenderTextWin::LastSelectionModelInsideRun( |
| const internal::TextRun* run) { |
| size_t position = LayoutIndexToTextIndex(run->range.end()); |
| position = IndexOfAdjacentGrapheme(position, CURSOR_BACKWARD); |
| return SelectionModel(position, CURSOR_FORWARD); |
| } |
| |
| RenderText* RenderText::CreateInstance() { |
| return new RenderTextWin; |
| } |
| |
| } // namespace gfx |