blob: f185761809c7afecf8a50e54a9667fb61d5f7636 [file] [log] [blame]
//===-- asan_globals.cc ---------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Handle globals.
//===----------------------------------------------------------------------===//
#include "asan_interceptors.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_poisoning.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_stats.h"
#include "asan_suppressions.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
namespace __asan {
typedef __asan_global Global;
struct ListOfGlobals {
const Global *g;
ListOfGlobals *next;
};
static BlockingMutex mu_for_globals(LINKER_INITIALIZED);
static LowLevelAllocator allocator_for_globals;
static ListOfGlobals *list_of_all_globals;
static const int kDynamicInitGlobalsInitialCapacity = 512;
struct DynInitGlobal {
Global g;
bool initialized;
};
typedef InternalMmapVector<DynInitGlobal> VectorOfGlobals;
// Lazy-initialized and never deleted.
static VectorOfGlobals *dynamic_init_globals;
// We want to remember where a certain range of globals was registered.
struct GlobalRegistrationSite {
u32 stack_id;
Global *g_first, *g_last;
};
typedef InternalMmapVector<GlobalRegistrationSite> GlobalRegistrationSiteVector;
static GlobalRegistrationSiteVector *global_registration_site_vector;
ALWAYS_INLINE void PoisonShadowForGlobal(const Global *g, u8 value) {
FastPoisonShadow(g->beg, g->size_with_redzone, value);
}
ALWAYS_INLINE void PoisonRedZones(const Global &g) {
uptr aligned_size = RoundUpTo(g.size, SHADOW_GRANULARITY);
FastPoisonShadow(g.beg + aligned_size, g.size_with_redzone - aligned_size,
kAsanGlobalRedzoneMagic);
if (g.size != aligned_size) {
FastPoisonShadowPartialRightRedzone(
g.beg + RoundDownTo(g.size, SHADOW_GRANULARITY),
g.size % SHADOW_GRANULARITY,
SHADOW_GRANULARITY,
kAsanGlobalRedzoneMagic);
}
}
const uptr kMinimalDistanceFromAnotherGlobal = 64;
static bool IsAddressNearGlobal(uptr addr, const __asan_global &g) {
if (addr <= g.beg - kMinimalDistanceFromAnotherGlobal) return false;
if (addr >= g.beg + g.size_with_redzone) return false;
return true;
}
static void ReportGlobal(const Global &g, const char *prefix) {
Report("%s Global[%p]: beg=%p size=%zu/%zu name=%s module=%s dyn_init=%zu\n",
prefix, &g, (void *)g.beg, g.size, g.size_with_redzone, g.name,
g.module_name, g.has_dynamic_init);
if (g.location) {
Report(" location (%p): name=%s[%p], %d %d\n", g.location,
g.location->filename, g.location->filename, g.location->line_no,
g.location->column_no);
}
}
static u32 FindRegistrationSite(const Global *g) {
mu_for_globals.CheckLocked();
CHECK(global_registration_site_vector);
for (uptr i = 0, n = global_registration_site_vector->size(); i < n; i++) {
GlobalRegistrationSite &grs = (*global_registration_site_vector)[i];
if (g >= grs.g_first && g <= grs.g_last)
return grs.stack_id;
}
return 0;
}
int GetGlobalsForAddress(uptr addr, Global *globals, u32 *reg_sites,
int max_globals) {
if (!flags()->report_globals) return 0;
BlockingMutexLock lock(&mu_for_globals);
int res = 0;
for (ListOfGlobals *l = list_of_all_globals; l; l = l->next) {
const Global &g = *l->g;
if (flags()->report_globals >= 2)
ReportGlobal(g, "Search");
if (IsAddressNearGlobal(addr, g)) {
globals[res] = g;
if (reg_sites)
reg_sites[res] = FindRegistrationSite(&g);
res++;
if (res == max_globals) break;
}
}
return res;
}
bool GetInfoForAddressIfGlobal(uptr addr, AddressDescription *descr) {
Global g = {};
if (GetGlobalsForAddress(addr, &g, nullptr, 1)) {
internal_strncpy(descr->name, g.name, descr->name_size);
descr->region_address = g.beg;
descr->region_size = g.size;
descr->region_kind = "global";
return true;
}
return false;
}
enum GlobalSymbolState {
UNREGISTERED = 0,
REGISTERED = 1
};
// Check ODR violation for given global G via special ODR indicator. We use
// this method in case compiler instruments global variables through their
// local aliases.
static void CheckODRViolationViaIndicator(const Global *g) {
u8 *odr_indicator = reinterpret_cast<u8 *>(g->odr_indicator);
if (*odr_indicator == UNREGISTERED) {
*odr_indicator = REGISTERED;
return;
}
// If *odr_indicator is DEFINED, some module have already registered
// externally visible symbol with the same name. This is an ODR violation.
for (ListOfGlobals *l = list_of_all_globals; l; l = l->next) {
if (g->odr_indicator == l->g->odr_indicator &&
(flags()->detect_odr_violation >= 2 || g->size != l->g->size) &&
!IsODRViolationSuppressed(g->name))
ReportODRViolation(g, FindRegistrationSite(g),
l->g, FindRegistrationSite(l->g));
}
}
// Check ODR violation for given global G by checking if it's already poisoned.
// We use this method in case compiler doesn't use private aliases for global
// variables.
static void CheckODRViolationViaPoisoning(const Global *g) {
if (__asan_region_is_poisoned(g->beg, g->size_with_redzone)) {
// This check may not be enough: if the first global is much larger
// the entire redzone of the second global may be within the first global.
for (ListOfGlobals *l = list_of_all_globals; l; l = l->next) {
if (g->beg == l->g->beg &&
(flags()->detect_odr_violation >= 2 || g->size != l->g->size) &&
!IsODRViolationSuppressed(g->name))
ReportODRViolation(g, FindRegistrationSite(g),
l->g, FindRegistrationSite(l->g));
}
}
}
// Clang provides two different ways for global variables protection:
// it can poison the global itself or its private alias. In former
// case we may poison same symbol multiple times, that can help us to
// cheaply detect ODR violation: if we try to poison an already poisoned
// global, we have ODR violation error.
// In latter case, we poison each symbol exactly once, so we use special
// indicator symbol to perform similar check.
// In either case, compiler provides a special odr_indicator field to Global
// structure, that can contain two kinds of values:
// 1) Non-zero value. In this case, odr_indicator is an address of
// corresponding indicator variable for given global.
// 2) Zero. This means that we don't use private aliases for global variables
// and can freely check ODR violation with the first method.
//
// This routine chooses between two different methods of ODR violation
// detection.
static inline bool UseODRIndicator(const Global *g) {
// Use ODR indicator method iff use_odr_indicator flag is set and
// indicator symbol address is not 0.
return flags()->use_odr_indicator && g->odr_indicator > 0;
}
// Register a global variable.
// This function may be called more than once for every global
// so we store the globals in a map.
static void RegisterGlobal(const Global *g) {
CHECK(asan_inited);
if (flags()->report_globals >= 2)
ReportGlobal(*g, "Added");
CHECK(flags()->report_globals);
CHECK(AddrIsInMem(g->beg));
if (!AddrIsAlignedByGranularity(g->beg)) {
Report("The following global variable is not properly aligned.\n");
Report("This may happen if another global with the same name\n");
Report("resides in another non-instrumented module.\n");
Report("Or the global comes from a C file built w/o -fno-common.\n");
Report("In either case this is likely an ODR violation bug,\n");
Report("but AddressSanitizer can not provide more details.\n");
ReportODRViolation(g, FindRegistrationSite(g), g, FindRegistrationSite(g));
CHECK(AddrIsAlignedByGranularity(g->beg));
}
CHECK(AddrIsAlignedByGranularity(g->size_with_redzone));
if (flags()->detect_odr_violation) {
// Try detecting ODR (One Definition Rule) violation, i.e. the situation
// where two globals with the same name are defined in different modules.
if (UseODRIndicator(g))
CheckODRViolationViaIndicator(g);
else
CheckODRViolationViaPoisoning(g);
}
if (CanPoisonMemory())
PoisonRedZones(*g);
ListOfGlobals *l = new(allocator_for_globals) ListOfGlobals;
l->g = g;
l->next = list_of_all_globals;
list_of_all_globals = l;
if (g->has_dynamic_init) {
if (!dynamic_init_globals) {
dynamic_init_globals = new(allocator_for_globals)
VectorOfGlobals(kDynamicInitGlobalsInitialCapacity);
}
DynInitGlobal dyn_global = { *g, false };
dynamic_init_globals->push_back(dyn_global);
}
}
static void UnregisterGlobal(const Global *g) {
CHECK(asan_inited);
if (flags()->report_globals >= 2)
ReportGlobal(*g, "Removed");
CHECK(flags()->report_globals);
CHECK(AddrIsInMem(g->beg));
CHECK(AddrIsAlignedByGranularity(g->beg));
CHECK(AddrIsAlignedByGranularity(g->size_with_redzone));
if (CanPoisonMemory())
PoisonShadowForGlobal(g, 0);
// We unpoison the shadow memory for the global but we do not remove it from
// the list because that would require O(n^2) time with the current list
// implementation. It might not be worth doing anyway.
// Release ODR indicator.
if (UseODRIndicator(g)) {
u8 *odr_indicator = reinterpret_cast<u8 *>(g->odr_indicator);
*odr_indicator = UNREGISTERED;
}
}
void StopInitOrderChecking() {
BlockingMutexLock lock(&mu_for_globals);
if (!flags()->check_initialization_order || !dynamic_init_globals)
return;
flags()->check_initialization_order = false;
for (uptr i = 0, n = dynamic_init_globals->size(); i < n; ++i) {
DynInitGlobal &dyn_g = (*dynamic_init_globals)[i];
const Global *g = &dyn_g.g;
// Unpoison the whole global.
PoisonShadowForGlobal(g, 0);
// Poison redzones back.
PoisonRedZones(*g);
}
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
// Apply __asan_register_globals to all globals found in the same loaded
// executable or shared library as `flag'. The flag tracks whether globals have
// already been registered or not for this image.
void __asan_register_image_globals(uptr *flag) {
if (*flag)
return;
AsanApplyToGlobals(__asan_register_globals, flag);
*flag = 1;
}
// This mirrors __asan_register_image_globals.
void __asan_unregister_image_globals(uptr *flag) {
if (!*flag)
return;
AsanApplyToGlobals(__asan_unregister_globals, flag);
*flag = 0;
}
// Register an array of globals.
void __asan_register_globals(__asan_global *globals, uptr n) {
if (!flags()->report_globals) return;
GET_STACK_TRACE_MALLOC;
u32 stack_id = StackDepotPut(stack);
BlockingMutexLock lock(&mu_for_globals);
if (!global_registration_site_vector)
global_registration_site_vector =
new(allocator_for_globals) GlobalRegistrationSiteVector(128);
GlobalRegistrationSite site = {stack_id, &globals[0], &globals[n - 1]};
global_registration_site_vector->push_back(site);
if (flags()->report_globals >= 2) {
PRINT_CURRENT_STACK();
Printf("=== ID %d; %p %p\n", stack_id, &globals[0], &globals[n - 1]);
}
for (uptr i = 0; i < n; i++) {
RegisterGlobal(&globals[i]);
}
}
// Unregister an array of globals.
// We must do this when a shared objects gets dlclosed.
void __asan_unregister_globals(__asan_global *globals, uptr n) {
if (!flags()->report_globals) return;
BlockingMutexLock lock(&mu_for_globals);
for (uptr i = 0; i < n; i++) {
UnregisterGlobal(&globals[i]);
}
}
// This method runs immediately prior to dynamic initialization in each TU,
// when all dynamically initialized globals are unpoisoned. This method
// poisons all global variables not defined in this TU, so that a dynamic
// initializer can only touch global variables in the same TU.
void __asan_before_dynamic_init(const char *module_name) {
if (!flags()->check_initialization_order ||
!CanPoisonMemory())
return;
bool strict_init_order = flags()->strict_init_order;
CHECK(dynamic_init_globals);
CHECK(module_name);
CHECK(asan_inited);
BlockingMutexLock lock(&mu_for_globals);
if (flags()->report_globals >= 3)
Printf("DynInitPoison module: %s\n", module_name);
for (uptr i = 0, n = dynamic_init_globals->size(); i < n; ++i) {
DynInitGlobal &dyn_g = (*dynamic_init_globals)[i];
const Global *g = &dyn_g.g;
if (dyn_g.initialized)
continue;
if (g->module_name != module_name)
PoisonShadowForGlobal(g, kAsanInitializationOrderMagic);
else if (!strict_init_order)
dyn_g.initialized = true;
}
}
// This method runs immediately after dynamic initialization in each TU, when
// all dynamically initialized globals except for those defined in the current
// TU are poisoned. It simply unpoisons all dynamically initialized globals.
void __asan_after_dynamic_init() {
if (!flags()->check_initialization_order ||
!CanPoisonMemory())
return;
CHECK(asan_inited);
BlockingMutexLock lock(&mu_for_globals);
// FIXME: Optionally report that we're unpoisoning globals from a module.
for (uptr i = 0, n = dynamic_init_globals->size(); i < n; ++i) {
DynInitGlobal &dyn_g = (*dynamic_init_globals)[i];
const Global *g = &dyn_g.g;
if (!dyn_g.initialized) {
// Unpoison the whole global.
PoisonShadowForGlobal(g, 0);
// Poison redzones back.
PoisonRedZones(*g);
}
}
}